Praktikum Pemograman Sains Data

Logo

1.8 PRAKTIKUM

1.8.1 Mengidentifikasi Tipe Data

Tentukan tipe data variabel berikut dalam Phyton dan R :

a = 42
b = 3.14
c = “Hello”
d = FALSE
e = [1, 2, 3]
f = {“name”: “Alice”, “age”: 25}

PERTANYAAN :

1. Identifikasi tipe data setiap variabel diatas

Variabel Nilai Tipe Data pada Python Tipe Data di R
A 42 int numeric (sebenarnya ini adalah integer akan tetapi beda bahasa beda pengenalannya, jika integer harus menambahkan “L”)
B 3.14 float numeric
C “Hello” str character
D FALSE bool logical
E [1,2,3] list numeric
F {“name”:“Alice”,“age”:25} dict list

2. Cetak tipe data setiap variabel menggunakan type()(Phyton) dan class()(R)

## [1] "numeric"
## [1] "numeric"
## [1] "character"
## [1] "logical"
## [1] "numeric"
## [1] "list"

1.8.2 Variabel dan Manipulasi Data

buat variabel berikut dalam phyton dan R :

x = 20
y = 5
text1 = “Data”
text2 = “Science”

PERTANYAAN :

1. Perbarui nilai x dengan menambahkan 10

## [1] 30

2. Gabungkan text 1 dan text 2 ke dalam “Data Science”

## [1] "Data Science"

3. Mengubah text gabungan menjadi huruf besar

## [1] "DATA SCIENCE"

1.8.3 Operasi Aritmatika

Mengingat variabel-variabel berikut :

a = 15
b = 4

PERTANYAAN :

1. Hitung jumlah, selisih, produk, pembagian, dan modulo dari a dan b

## [1] 19
## [1] 11
## [1] 60
## [1] 3.75
## [1] 3

2. Hitung a pangkat b

## [1] 50625

3. Buat variabel baru c = a / b dan ubah menjadi integer

## [1] 3

1.8.4 Operasi String

Diberikan text berikut :

text = “Hello, Data Science!”

PERTANYAAN :

1. Ekstrak 5 karakter pertama dari text diatas

## [1] "Hello"

2. HIitung jumlah karakter dalam text

## [1] 20

3. Mengubah text menjadi huruf kecil

## [1] "hello, data science!"

1.8.5 Operator Perbandingan Dan Logika

Mengingat variabel-variabel berikut :

x = 7
y = 10

PERTANYAAN :

1. Periksa apakah x lebih besar dari y

## [1] FALSE

2. Periksa apakah x kurang dari atau sama dengan y

## [1] TRUE

3. Periksa apakah x tidak sama dengan y

## [1] TRUE

4. Evaluasi lah ekspresi ( x > 5) AND ( y < 20 )

## [1] TRUE

1.8.6 Konversi Tipe Data

Mengingat variabel-variabel berikut :

num_str = “123”
num_float = 45.67

PERTANYAAN :

1. Ubah num_str ke bilangan bulat dan tambahkan 10.

## [1] 133

2. Ubah num_float ke bilangan bulat

## [1] 45

3. Mengonversi num_flot kembali menjadi string.

## [1] "45.67"

1.9 Bonus Challenge

Buat Program Interaktif yang Meminta Pengguna untuk Memasukkan :

  1. Nama
  2. Usia
  3. Kota Kelahiran
## Masukkan nama Anda:
## Masukkan usia Anda:
## Masukkan kota kelahiran Anda:
## Hello  , you are NA years old and from  .
LS0tDQp0aXRsZTogIlByYWt0aWt1bSBQZW1vZ3JhbWFuIFNhaW5zIERhdGEiDQphdXRob3I6ICJXaGlyZHlhbmEgU2hhbGZhIEF5dWJpIg0KZGF0ZTogICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDogDQogIHJtZGZvcm1hdHM6OnJlYWR0aGVkb3duOiAgICMgaHR0cHM6Ly9naXRodWIuY29tL2p1YmEvcm1kZm9ybWF0cw0KICAgIHNlbGZfY29udGFpbmVkOiB0cnVlDQogICAgdGh1bWJuYWlsczogdHJ1ZQ0KICAgIGxpZ2h0Ym94OiB0cnVlDQogICAgZ2FsbGVyeTogdHJ1ZQ0KICAgIGxpYl9kaXI6IGxpYnMNCiAgICBkZl9wcmludDogInBhZ2VkIg0KICAgIGNvZGVfZm9sZGluZzogInNob3ciDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgY3NzOiAiQzovVXNlcnMvU0FMRkEvT25lRHJpdmUvRG9jdW1lbnRzL3ByYWt0aWt1bS9zdHlsZS5jc3MiDQotLS0NCjxpbWcgaWQ9ImZvdG8tc2hhbGZhIiBzcmM9IkM6L1VzZXJzL1NBTEZBL09uZURyaXZlL0RvY3VtZW50cy9mb3RvIHNoYWxmYS5qcGciIGFsdD0iTG9nbyIgc3R5bGU9IndpZHRoOjIwMHB4OyBkaXNwbGF5OiBibG9jazsgbWFyZ2luOiBhdXRvOyI+DQotLS0NCg0KIyAqKjEuOCBQUkFLVElLVU0qKg0KDQojIyAqKjEuOC4xIE1lbmdpZGVudGlmaWthc2kgVGlwZSBEYXRhKioNCg0KVGVudHVrYW4gdGlwZSBkYXRhIHZhcmlhYmVsIGJlcmlrdXQgZGFsYW0gUGh5dG9uIGRhbiBSIDoNCg0KYSA9IDQyIFwNCmIgPSAzLjE0IFwNCmMgPSAiSGVsbG8iIFwNCmQgPSBGQUxTRSBcDQplID0gWzEsIDIsIDNdIFwNCmYgPSB7Im5hbWUiOiAiQWxpY2UiLCAiYWdlIjogMjV9DQoNClBFUlRBTllBQU4gOiANCg0KKioxLiBJZGVudGlmaWthc2kgdGlwZSBkYXRhIHNldGlhcCB2YXJpYWJlbCBkaWF0YXMqKg0KDQp8IFZhcmlhYmVsIHwgTmlsYWkgfCBUaXBlIERhdGEgcGFkYSBQeXRob24gfCBUaXBlIERhdGEgZGkgUiB8DQp8LS0tLS0tLS0tfC0tLS0tLS18LS0tLS0tLS18LS0tLS0tLXwNCnwgQSB8IDQyICB8IGludCB8IG51bWVyaWMgKHNlYmVuYXJueWEgaW5pIGFkYWxhaCBpbnRlZ2VyIGFrYW4gdGV0YXBpIGJlZGEgYmFoYXNhIGJlZGEgcGVuZ2VuYWxhbm55YSwgamlrYSBpbnRlZ2VyIGhhcnVzIG1lbmFtYmFoa2FuICJMIikgfA0KfCBCIHwgMy4xNHwgZmxvYXQgfCBudW1lcmljIHwNCnwgQyB8ICJIZWxsbyJ8IHN0ciB8IGNoYXJhY3RlciB8DQp8IEQgfCBGQUxTRSB8IGJvb2wgfCBsb2dpY2FsIHwNCnwgRSB8IFsxLDIsM118IGxpc3QgIHwgbnVtZXJpYyAgfA0KfCBGIHwgeyJuYW1lIjoiQWxpY2UiLCJhZ2UiOjI1fXwgZGljdCAgfCBsaXN0ICB8DQoNCg0KKioyLiBDZXRhayB0aXBlIGRhdGEgc2V0aWFwIHZhcmlhYmVsIG1lbmdndW5ha2FuIHR5cGUoKShQaHl0b24pIGRhbiBjbGFzcygpKFIpKioNCg0KYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmEgPC0gNDINCmIgPC0gMy4xNA0KYyA8LSAiSGVsbG8iDQpkIDwtIEZBTFNFDQplIDwtIGMoMSwgMiwgMykNCmYgPC0gbGlzdChuYW1lID0gIkFsaWNlIiwgYWdlID0gMjUpDQoNCnByaW50KGNsYXNzKGEpKSAgDQpwcmludChjbGFzcyhiKSkgIA0KcHJpbnQoY2xhc3MoYykpIA0KcHJpbnQoY2xhc3MoZCkpICANCnByaW50KGNsYXNzKGUpKSAgDQpwcmludChjbGFzcyhmKSkgIA0KYGBgDQojIyAqKjEuOC4yIFZhcmlhYmVsIGRhbiBNYW5pcHVsYXNpIERhdGEqKg0KDQpidWF0IHZhcmlhYmVsIGJlcmlrdXQgZGFsYW0gcGh5dG9uIGRhbiBSIDoNCg0KeCA9IDIwIFwNCnkgPSA1IFwNCnRleHQxID0gIkRhdGEiIFwNCnRleHQyID0gIlNjaWVuY2UiDQoNClBFUlRBTllBQU4gOiANCg0KKioxLiBQZXJiYXJ1aSBuaWxhaSB4IGRlbmdhbiBtZW5hbWJhaGthbiAxMCoqDQoNCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQp4IDwtIDIwDQp4IDwtIHggKyAxMA0KcHJpbnQoeCkgICMgT3V0cHV0OiAzMA0KYGBgDQoqKjIuIEdhYnVuZ2thbiB0ZXh0IDEgZGFuIHRleHQgMiBrZSBkYWxhbSAiRGF0YSBTY2llbmNlIioqDQoNCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQp0ZXh0MSA8LSAiRGF0YSINCnRleHQyIDwtICJTY2llbmNlIg0KdGV4dF9jb21iaW5lZCA8LSBwYXN0ZSh0ZXh0MSwgdGV4dDIpDQpwcmludCh0ZXh0X2NvbWJpbmVkKSAgDQpgYGANCioqMy4gTWVuZ3ViYWggdGV4dCBnYWJ1bmdhbiBtZW5qYWRpIGh1cnVmIGJlc2FyKioNCg0KYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCnRleHRfY29tYmluZWQgPC0gIkRhdGEgU2NpZW5jZSINCnByaW50KHRvdXBwZXIodGV4dF9jb21iaW5lZCkpDQpgYGANCg0KIyMgKioxLjguMyBPcGVyYXNpIEFyaXRtYXRpa2EqKg0KDQpNZW5naW5nYXQgdmFyaWFiZWwtdmFyaWFiZWwgYmVyaWt1dCA6DQoNCmEgPSAxNSBcDQpiID0gNA0KDQpQRVJUQU5ZQUFOIDoNCg0KKioxLiBIaXR1bmcganVtbGFoLCBzZWxpc2loLCBwcm9kdWssIHBlbWJhZ2lhbiwgZGFuIG1vZHVsbyBkYXJpIGEgZGFuIGIqKg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KYSA8LSAxNQ0KYiA8LSA0DQoNCmp1bWxhaCA8LSBhICsgYg0Kc2VsaXNpaCA8LSBhIC0gYg0KcHJvZHVrIDwtIGEgKiBiDQpwZW1iYWdpYW4gPC0gYSAvIGIgIA0KbW9kdWxvIDwtIGEgJSUgYiAgDQoNCnByaW50KGp1bWxhaCkgICAgIA0KcHJpbnQoc2VsaXNpaCkgICAgDQpwcmludChwcm9kdWspICAgICANCnByaW50KHBlbWJhZ2lhbikgIA0KcHJpbnQobW9kdWxvKSAgICAgDQpgYGANCioqMi4gSGl0dW5nIGEgcGFuZ2thdCBiKioNCg0KYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCnBhbmdrYXQgPC0gYV5iICANCnByaW50KHBhbmdrYXQpIA0KYGBgDQoNCioqMy4gQnVhdCB2YXJpYWJlbCBiYXJ1IGMgPSBhIC8gYiBkYW4gdWJhaCBtZW5qYWRpIGludGVnZXIqKg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KYyA8LSBhIC8gYg0KY19pbnRlZ2VyIDwtIGFzLmludGVnZXIoYykgICMgS29udmVyc2kga2UgaW50ZWdlcg0KcHJpbnQoY19pbnRlZ2VyKSAgDQpgYGANCg0KIyMgKioxLjguNCBPcGVyYXNpIFN0cmluZyoqDQoNCkRpYmVyaWthbiB0ZXh0IGJlcmlrdXQgOg0KDQp0ZXh0ID0gIkhlbGxvLCBEYXRhIFNjaWVuY2UhIg0KDQpQRVJUQU5ZQUFOIDoNCg0KKioxLiBFa3N0cmFrIDUga2FyYWt0ZXIgcGVydGFtYSBkYXJpIHRleHQgZGlhdGFzKioNCg0KYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCnRleHQgPC0gIkhlbGxvLCBEYXRhIFNjaWVuY2UhIg0KcHJpbnQoc3Vic3RyKHRleHQsIDEsIDUpKQ0KYGBgDQoNCioqMi4gSElpdHVuZyBqdW1sYWgga2FyYWt0ZXIgZGFsYW0gdGV4dCoqDQoNCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQp0ZXh0IDwtICJIZWxsbywgRGF0YSBTY2llbmNlISINCnByaW50KG5jaGFyKHRleHQpKSAgDQpgYGANCg0KKiozLiBNZW5ndWJhaCB0ZXh0IG1lbmphZGkgaHVydWYga2VjaWwqKg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KdGV4dCA8LSAiSGVsbG8sIERhdGEgU2NpZW5jZSEiDQpwcmludCh0b2xvd2VyKHRleHQpKSANCmBgYA0KDQojIyAqKjEuOC41IE9wZXJhdG9yIFBlcmJhbmRpbmdhbiBEYW4gTG9naWthKioNCg0KTWVuZ2luZ2F0IHZhcmlhYmVsLXZhcmlhYmVsIGJlcmlrdXQgOg0KDQp4ID0gNyBcDQp5ID0gMTANCg0KUEVSVEFOWUFBTiA6DQoNCioqMS4gUGVyaWtzYSBhcGFrYWggeCBsZWJpaCBiZXNhciBkYXJpIHkqKg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KeCA8LSA3DQp5IDwtIDEwDQoNCnByaW50KC0geCA+IHkpIA0KYGBgDQoNCioqMi4gUGVyaWtzYSBhcGFrYWggeCBrdXJhbmcgZGFyaSBhdGF1IHNhbWEgZGVuZ2FuIHkqKg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KaGFzaWwgPC0geCA8PSB5DQpwcmludChoYXNpbCkgIA0KYGBgDQoNCioqMy4gUGVyaWtzYSBhcGFrYWggeCB0aWRhayBzYW1hIGRlbmdhbiB5KioNCg0KYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmhhc2lsIDwtIHggIT0geQ0KcHJpbnQoaGFzaWwpICANCmBgYA0KDQoqKjQuIEV2YWx1YXNpIGxhaCBla3NwcmVzaSAoIHggPiA1KSBBTkQgKCB5IDwgMjAgKSoqDQoNCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpoYXNpbCA8LSAoeCA+IDUpICYgKHkgPCAyMCkNCnByaW50KGhhc2lsKSAgDQpgYGANCg0KIyMgKioxLjguNiBLb252ZXJzaSBUaXBlIERhdGEqKg0KDQpNZW5naW5nYXQgdmFyaWFiZWwtdmFyaWFiZWwgYmVyaWt1dCA6DQoNCm51bV9zdHIgPSAiMTIzIiBcDQpudW1fZmxvYXQgPSA0NS42Nw0KDQpQRVJUQU5ZQUFOIDoNCg0KKioxLiBVYmFoIG51bV9zdHIga2UgYmlsYW5nYW4gYnVsYXQgZGFuIHRhbWJhaGthbiAxMC4qKg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbnVtX3N0ciA8LSAiMTIzIg0KbnVtX2ludCA8LSBhcy5pbnRlZ2VyKG51bV9zdHIpICAjIEtvbnZlcnNpIGtlIGJpbGFuZ2FuIGJ1bGF0DQpwcmludChudW1faW50ICsgMTAgKSAgDQpgYGANCg0KKioyLiBVYmFoIG51bV9mbG9hdCBrZSBiaWxhbmdhbiBidWxhdCoqDQoNCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpudW1fZmxvYXQgPC0gNDUuNjcNCm51bV9pbnQgPC0gYXMuaW50ZWdlcihudW1fZmxvYXQpICAjIEtvbnZlcnNpIGtlIGJpbGFuZ2FuIGJ1bGF0DQpwcmludChudW1faW50KSAgDQpgYGANCg0KKiozLiBNZW5nb252ZXJzaSBudW1fZmxvdCBrZW1iYWxpIG1lbmphZGkgc3RyaW5nLioqDQoNCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpudW1fZmxvYXQgPC0gNDUuNjcNCm51bV9zdHIgPC0gYXMuY2hhcmFjdGVyKG51bV9mbG9hdCkgICMgS29udmVyc2kga2Ugc3RyaW5nDQpwcmludChudW1fc3RyKSAgDQpgYGANCg0KIyMgKioxLjkgQm9udXMgQ2hhbGxlbmdlKioNCg0KQnVhdCBQcm9ncmFtIEludGVyYWt0aWYgeWFuZyBNZW1pbnRhIFBlbmdndW5hIHVudHVrIE1lbWFzdWtrYW4gOg0KDQoxLiBOYW1hIFwNCjIuIFVzaWEgXA0KMy4gS290YSBLZWxhaGlyYW4NCg0KYGBge3IsIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQoNCm5hbWEgPC0gcmVhZGxpbmUocHJvbXB0ID0gIk1hc3Vra2FuIG5hbWEgQW5kYTogIikNCnVzaWEgPC0gYXMubnVtZXJpYyhyZWFkbGluZShwcm9tcHQgPSAiTWFzdWtrYW4gdXNpYSBBbmRhOiAiKSkgICMgS29udmVyc2kga2UgYW5na2ENCmtvdGEgPC0gcmVhZGxpbmUocHJvbXB0ID0gIk1hc3Vra2FuIGtvdGEga2VsYWhpcmFuIEFuZGE6ICIpDQoNCmNhdCgiSGVsbG8iLCBuYW1hLCAiLCB5b3UgYXJlIiwgdXNpYSwgInllYXJzIG9sZCBhbmQgZnJvbSIsIGtvdGEsICIuXG4iKQ0KYGBgDQoNCg0K