Table:
FG stats by position |
Position |
Count |
Minimum |
Average |
maximum |
Center |
4 |
40.8 |
50.8 |
59.9 |
Forward |
4 |
50.9 |
54.2 |
59.1 |
Guard |
4 |
46.6 |
52.9 |
58.0 |
Code:
# Installing and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("gtExtras"))
install.packages("gtExtras")
library(tidyverse)
library(gtExtras)
# Installing and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("gtExtras"))
install.packages("gtExtras")
library(tidyverse)
library(gtExtras)
# Specify made-up data for 12 players and turn it into a data frame
# Note: I used ChatGPT to help generate this data
Player <- c(
"Player 1",
"Player 2",
"Player 3",
"Player 4",
"Player 5",
"Player 6",
"Player 7",
"Player 8",
"Player 9",
"Player 10",
"Player 11",
"Player 12"
)
Position <- c(
"Guard",
"Center",
"Center",
"Guard",
"Forward",
"Center",
"Forward",
"Guard",
"Center",
"Forward",
"Guard",
"Forward"
)
FG_Percentage <- c(58.0,
44.9,
40.8,
46.6,
59.1,
57.8,
53.9,
52.8,
59.9,
53.1,
54.2,
50.9)
basketball_players <- data.frame(Player, Position, FG_Percentage)
FG_Average <- mean(FG_Percentage)
basketball_players <- basketball_players %>%
mutate(
FG_Category = case_when(
FG_Percentage < FG_Average ~ "Below average",
FG_Percentage == FG_Average ~ "Average",
FG_Percentage > FG_Average ~ "Above average",
.default = "Error"
)
)
# Making the table
Player_table <- gt(basketball_players) %>%
tab_header("Player positions and FG stats") %>%
cols_align(align = "left") %>%
gt_theme_538
# Showing the table
Player_table
# Grouping and summarizing
Summary <- basketball_players %>%
group_by(Position) %>%
summarize(Count = n(),
Minimum = min(FG_Percentage),
Average = round(mean(FG_Percentage),1),
maximum = max(FG_Percentage))
# Making the table
Summary_table <- gt(Summary) %>%
tab_header("FG stats by position") %>%
cols_align(align = "left") %>%
gt_theme_538
# Showing the table
Summary_table