Summary of Field Goal Stats by Position

# Installing and loading required packages
if (!require("tidyverse")) install.packages("tidyverse")
## Loading required package: tidyverse
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
if (!require("gt")) install.packages("gt")
## Loading required package: gt
library(tidyverse)
library(gt)
# Specify made-up data for 12 players and turn it into a data frame
Player <- c(
  "Player 1", "Player 2", "Player 3", "Player 4", "Player 5", "Player 6", 
  "Player 7", "Player 8", "Player 9", "Player 10", "Player 11", "Player 12"
)

Position <- c(
  "Guard", "Center", "Center", "Guard", "Forward", "Center", 
  "Forward", "Guard", "Center", "Forward", "Guard", "Forward"
)

FG_Percentage <- c(58.0, 44.9, 40.8, 46.6, 59.1, 57.8, 53.9, 52.8, 59.9, 53.1, 54.2, 50.9)

basketball_players <- data.frame(Player, Position, FG_Percentage)
# Summarizing field goal stats by position
fg_stats <- basketball_players %>%
  group_by(Position) %>%
  summarise(
    Count = n(),
    Minimum = min(FG_Percentage),
    Average = mean(FG_Percentage),
    Maximum = max(FG_Percentage)
  ) %>%
  arrange(desc(Average))
# Creating and displaying the table
fg_stats %>%
  gt() %>%
  tab_header(title = "FG stats by position")
FG stats by position
Position Count Minimum Average Maximum
Forward 4 50.9 54.25 59.1
Guard 4 46.6 52.90 58.0
Center 4 40.8 50.85 59.9

R Code Used

# Code used to create the table
# (This is displayed here but does not generate another table)