# Load libraries
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
# Load movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(movies)
## # A tibble: 6 × 8
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Zack… Roma… The Weinstei…                 70          1.75                  64
## 2 Yout… Come… The Weinstei…                 52          1.09                  68
## 3 You … Come… Independent                   35          1.21                  43
## 4 When… Come… Disney                        44          0                     15
## 5 What… Come… Fox                           72          6.27                  28
## 6 Wate… Drama 20th Century…                 72          3.08                  60
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>
# Q1 -  Rename the "Film" column to "movie_title" and "Year" to "release_year"
one <- movies %>% 
  rename(movie_title = Film, release_year = Year)
head(movies)
## # A tibble: 6 × 8
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Zack… Roma… The Weinstei…                 70          1.75                  64
## 2 Yout… Come… The Weinstei…                 52          1.09                  68
## 3 You … Come… Independent                   35          1.21                  43
## 4 When… Come… Disney                        44          0                     15
## 5 What… Come… Fox                           72          6.27                  28
## 6 Wate… Drama 20th Century…                 72          3.08                  60
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>
# Q2 - Select only the columns: movie_title, release_year, Genre, Profitability
two <- one %>% 
  select(movie_title, release_year, Genre, Profitability)
head(two)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08
# Q3 - Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80
three <- two %>%
  filter(release_year > 2000, "Rotten Tomatoes %" > 80)
head(three)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08
# Q4 - Add a new column "Profitability_millions" converting Profitability to millions of dollars
four <- three %>% 
  mutate(Profitability_millions = Profitability * 1e6)
head(four)
## # A tibble: 6 × 5
##   movie_title            release_year Genre Profitability Profitability_millions
##   <chr>                         <dbl> <chr>         <dbl>                  <dbl>
## 1 Zack and Miri Make a …         2008 Roma…          1.75               1747542.
## 2 Youth in Revolt                2010 Come…          1.09               1090000 
## 3 You Will Meet a Tall …         2010 Come…          1.21               1211818.
## 4 When in Rome                   2010 Come…          0                        0 
## 5 What Happens in Vegas          2008 Come…          6.27               6267647.
## 6 Water For Elephants            2011 Drama          3.08               3081421.
# Q5 - Sort the filtered dataset by Rotten Tomatoes % (descending) and then by Profitability (descending)
five <- four %>% 
  arrange(desc("Rotten Tomatoes %"), desc(Profitability_millions))
head(five)
## # A tibble: 6 × 5
##   movie_title            release_year Genre Profitability Profitability_millions
##   <chr>                         <dbl> <chr>         <dbl>                  <dbl>
## 1 Fireproof                      2008 Drama         66.9               66934000 
## 2 High School Musical 3…         2008 Come…         22.9               22913136.
## 3 The Twilight Saga: Ne…         2009 Drama         14.2               14196400 
## 4 Waitress                       2007 Roma…         11.1               11089742.
## 5 Twilight                       2008 Roma…         10.2               10180027.
## 6 Mamma Mia!                     2008 Come…          9.23               9234454.
# Q6 - Combine all operations into a single pipeline
final <- movies %>% 
  rename(movie_title = Film, release_year = Year) %>% 
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>% 
  filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>% 
  mutate(Profitability_millions = Profitability * 1e6) %>% 
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(final)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>
# Q7 - From the resulting data, the best movies (highest Rotten Tomatoes %) are not necessarily the most profitable. While highly-rated movies may attract critical praise, profitability is driven by multiple factors such as production budget, marketing, and audience reach.
# EXTRA CREDIT - Create a summary dataframe with average rating and Profitability_millions by Genre
extra_credit <- movies %>% 
  rename(movie_title = Film, release_year = Year) %>% 
  mutate(Profitability_millions = Profitability * 1e6) %>% 
  group_by(Genre) %>% 
  summarize(
    average_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    average_profitability_millions = mean(Profitability_millions, na.rm = TRUE)
  )
head(extra_credit)
## # A tibble: 6 × 3
##   Genre     average_rating average_profitability_millions
##   <chr>              <dbl>                          <dbl>
## 1 Action              11                         1245333.
## 2 Animation           74.2                       3759414.
## 3 Comdy               13                         2649068.
## 4 Comedy              42.7                       3776946.
## 5 Drama               51.5                       8407218.
## 6 Fantasy             73                         1783944.