Code
library(tidyverse)
top_albums <- read_csv(
"https://jsuleiman.com/datasets/Rolling_Stones_Top_500_Albums.csv",
locale = locale(encoding = "ISO-8859-2", asciify = TRUE))library(tidyverse)
top_albums <- read_csv(
"https://jsuleiman.com/datasets/Rolling_Stones_Top_500_Albums.csv",
locale = locale(encoding = "ISO-8859-2", asciify = TRUE))top_genres <- top_albums |>
count(Genre, sort = TRUE) |>
top_n(10, n)
ggplot(top_genres, aes(x = reorder(Genre, n), y = n)) +
geom_bar(stat = "identity", fill = "skyblue") +
labs(title = "Top 10 Most Common Genres", x = "Genre", y = "Count") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))library(tidyverse)
top_albums <- read_csv(
"https://jsuleiman.com/datasets/Rolling_Stones_Top_500_Albums.csv",
locale = locale(encoding = "ISO-8859-2", asciify = TRUE))top_genres <- top_albums |>
count(Genre, sort = TRUE) |>
top_n(10, n)
ggplot(top_genres, aes(x = Genre, y = n, size = n, fill = Genre)) +
geom_point(alpha = 0.7, shape = 21, color = "skyblue") +
scale_size(range = c(3, 15)) +
labs(title = "Top 10 Most Common Genres (Bubble Chart)",
x = "Genre",
y = "Count",
size = "Count") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))