library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename(): (4 points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

q1 <- movies %>%
  rename(movie_title = Film, release_year = Year)

head(q1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

q2 <- movies %>%
  select(Film, Year, Genre, Profitability)

head(q2)
## # A tibble: 6 × 4
##   Film                                Year Genre   Profitability
##   <chr>                              <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno          2008 Romance          1.75
## 2 Youth in Revolt                     2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger  2010 Comedy           1.21
## 4 When in Rome                        2010 Comedy           0   
## 5 What Happens in Vegas               2008 Comedy           6.27
## 6 Water For Elephants                 2011 Drama            3.08

3. filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

q3 <-movies %>% 
  filter(Year > 2000, 'Rotten_Tomatoes_Percent' > 80)

head (q3)
## # A tibble: 6 × 8
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Zack… Roma… The Weinstei…                 70          1.75                  64
## 2 Yout… Come… The Weinstei…                 52          1.09                  68
## 3 You … Come… Independent                   35          1.21                  43
## 4 When… Come… Disney                        44          0                     15
## 5 What… Come… Fox                           72          6.27                  28
## 6 Wate… Drama 20th Century…                 72          3.08                  60
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>

4. mutate(): (4 points)

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

q4 <-movies %>%
  mutate(Profitability_millions = Profitability / 1e6)

head (q4)
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Zack… Roma… The Weinstei…                 70          1.75                  64
## 2 Yout… Come… The Weinstei…                 52          1.09                  68
## 3 You … Come… Independent                   35          1.21                  43
## 4 When… Come… Disney                        44          0                     15
## 5 What… Come… Fox                           72          6.27                  28
## 6 Wate… Drama 20th Century…                 72          3.08                  60
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_millions <dbl>

5. arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

q5  <- q4 %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))

head (q5)
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 WALL… Anim… Disney                        89          2.90                  96
## 2 Midn… Rome… Sony                          84          8.74                  93
## 3 Ench… Come… Disney                        80          4.01                  93
## 4 Knoc… Come… Universal                     83          6.64                  91
## 5 Wait… Roma… Independent                   67         11.1                   89
## 6 A Se… Drama Universal                     64          4.38                  89
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_millions <dbl>

6. Combining functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

q6 <- movies %>%
  rename(movie_title = Film, release_year = Year) %>% 
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability / 1e6) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))

head (q6)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

7. Interpret question 6 (1 point)

No, the movies with the highest Rotten Tomato scores are not the most profitable. This means that if “best” equates to most profitable, this statement is not true.

EXTRA CREDIT (4 points)

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

library(dplyr)
library(stringr)

movies$Genre <- str_to_title(trimws(movies$Genre))
movies$Genre <- recode(movies$Genre, 
                       "Comdy" = "Comedy",
                       "Romence" = "Romance",
                       "comedy" = "Comedy",
                       "romance" = "Romance")

q8 <- movies %>%
  group_by(Genre) %>%
  summarize(
    `Rotten Tomatoes %` = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    avg_profitability = mean(Profitability, na.rm = TRUE)
  )

print(q8)
## # A tibble: 6 × 3
##   Genre     `Rotten Tomatoes %` avg_profitability
##   <chr>                   <dbl>             <dbl>
## 1 Action                   11                1.25
## 2 Animation                74.2              3.76
## 3 Comedy                   43.0              3.85
## 4 Drama                    51.5              8.41
## 5 Fantasy                  73                1.78
## 6 Romance                  46.3              4.08