library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Question 1

Rename the “Film” column to “movie_title” and “Year” to “release_year”

renamed_movies  <- movies %>%
  rename(movie_title = Film, 
         release_year = Year)

head(renamed_movies , 3)
## # A tibble: 3 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 2

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability

selected_movies  <- movies %>%
  rename(movie_title = Film, 
         release_year = Year) %>%
select(movie_title , release_year , Genre , Profitability)

head(selected_movies , 3)
## # A tibble: 3 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21

Question 3

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80

filtered_movies <- movies %>% # then
  rename(movie_title = Film, 
         release_year = Year) %>%
  filter(release_year > 2000 & 'Rotten Tomatoes %' > 80)

head(filtered_movies ,3)
## # A tibble: 3 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 4

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

movie_profits <- movies %>%
  mutate(Profitability_millions = Profitability*1e6) %>%
  select(Profitability_millions)

head(movie_profits , 3)
## # A tibble: 3 × 1
##   Profitability_millions
##                    <dbl>
## 1               1747542.
## 2               1090000 
## 3               1211818.

Question 5

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

sorted_movies <- movies %>%
  arrange(desc('Rotten Tomatoes %') , desc(Profitability))

head(sorted_movies , 3)
## # A tibble: 3 × 8
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Fire… Drama Independent                   51          66.9                  40
## 2 High… Come… Disney                        76          22.9                  65
## 3 The … Drama Summit                        78          14.2                  27
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>

Question 6

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations

combining <- movies %>% # then
  rename(movie_title = Film , release_year = Year) %>%
  select(movie_title , release_year , Genre , Profitability) %>%
  filter(release_year > 2000 & 'Rotten Tomatoes %' > 80) %>%
  mutate(Profitability_millions = Profitability/1,000,000) %>%
  arrange(desc('Rotten Tomatoes %') , desc(Profitability))

head(combining)
## # A tibble: 6 × 6
##   movie_title      release_year Genre Profitability Profitability_millions   `0`
##   <chr>                   <dbl> <chr>         <dbl>                  <dbl> <dbl>
## 1 Fireproof                2008 Drama         66.9                   66.9      0
## 2 High School Mus…         2008 Come…         22.9                   22.9      0
## 3 The Twilight Sa…         2009 Drama         14.2                   14.2      0
## 4 Waitress                 2007 Roma…         11.1                   11.1      0
## 5 Twilight                 2008 Roma…         10.2                   10.2      0
## 6 Mamma Mia!               2008 Come…          9.23                   9.23     0

Question 7

From the resulting data, are the best movies the most popular?

# Based on the resulting data, it appears that the best movies are normally the most popular, but sometimes it may depend on audience score.

EXTRA CREDIT

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

extra_credit <- movies %>%
  mutate(Profitability_millions = Profitability*1e6) %>%
  select(Genre, 'Rotten Tomatoes %', Profitability_millions)
Genre_Summary <- extra_credit %>%
  group_by(Genre) %>%
  summarize(
    avg_rotten_tomatoes = mean('Rotten Tomatoes %', na.rm = TRUE),
    avg_profitability = mean(Profitability_millions, na.rm = TRUE))
## Warning: There were 10 warnings in `summarize()`.
## The first warning was:
## ℹ In argument: `avg_rotten_tomatoes = mean("Rotten Tomatoes %", na.rm = TRUE)`.
## ℹ In group 1: `Genre = "Action"`.
## Caused by warning in `mean.default()`:
## ! argument is not numeric or logical: returning NA
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 9 remaining warnings.
head(Genre_Summary)
## # A tibble: 6 × 3
##   Genre     avg_rotten_tomatoes avg_profitability
##   <chr>                   <dbl>             <dbl>
## 1 Action                     NA          1245333.
## 2 Animation                  NA          3759414.
## 3 Comdy                      NA          2649068.
## 4 Comedy                     NA          3776946.
## 5 Drama                      NA          8407218.
## 6 Fantasy                    NA          1783944.