Q1 <- movies %>%
rename(movie_title = Film , release_year = Year)
(head(Q1))
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
Q2 <- Q1 %>%
select(movie_title, release_year, Genre, Profitability)
(head(Q2))
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
Q3 <- Q1 %>%
select(movie_title, release_year, Genre, Profitability , `Rotten Tomatoes %`) %>%
filter(release_year > 2000 & `Rotten Tomatoes %` > 80)
head(Q3)
## # A tibble: 6 × 5
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animati… 2.90 96
## 2 Waitress 2007 Romance 11.1 89
## 3 Tangled 2010 Animati… 1.37 89
## 4 Rachel Getting Married 2008 Drama 1.38 85
## 5 My Week with Marilyn 2011 Drama 0.826 83
## 6 Midnight in Paris 2011 Romence 8.74 93
Q4 <- Q3 %>%
mutate(Profitability_millions = Profitability * 1e6)
head(Q4)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animati… 2.90 96
## 2 Waitress 2007 Romance 11.1 89
## 3 Tangled 2010 Animati… 1.37 89
## 4 Rachel Getting Married 2008 Drama 1.38 85
## 5 My Week with Marilyn 2011 Drama 0.826 83
## 6 Midnight in Paris 2011 Romence 8.74 93
## # ℹ 1 more variable: Profitability_millions <dbl>
Q5 <- Q4 %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability*1e6))
head(Q5)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Midnight in Paris 2011 Romence 8.74 93
## 3 Enchanted 2007 Comedy 4.01 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Waitress 2007 Romance 11.1 89
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: Profitability_millions <dbl>
Q6 <- movies %>%
filter(Year > 2000 & `Rotten Tomatoes %` > 80) %>%
select(Film, Year, Genre, Profitability,`Rotten Tomatoes %`) %>%
mutate(Profitability_millions = Profitability*1e6) %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability*1e6))
head(Q6)
## # A tibble: 6 × 6
## Film Year Genre Profitability `Rotten Tomatoes %` Profitability_millions
## <chr> <dbl> <chr> <dbl> <dbl> <dbl>
## 1 WALL-E 2008 Anim… 2.90 96 2896019.
## 2 Midnight… 2011 Rome… 8.74 93 8744706.
## 3 Enchanted 2007 Come… 4.01 93 4005737.
## 4 Knocked … 2007 Come… 6.64 91 6636402.
## 5 Waitress 2007 Roma… 11.1 89 11089742.
## 6 A Seriou… 2009 Drama 4.38 89 4382857.
extra_credit <- Q6 %>%
mutate(
Genre = tolower(Genre), # Convert to lowercase
Genre = ifelse(Genre == "romence", "romance", Genre) # Fix "romence" typo
) %>%
group_by(Genre) %>%
summarize(avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
avg_profitability_millions = mean(Profitability_millions, na.rm = TRUE))
extra_credit
## # A tibble: 4 × 3
## Genre avg_rating avg_profitability_millions
## <chr> <dbl> <dbl>
## 1 animation 92.5 2130856.
## 2 comedy 88.8 5802503.
## 3 drama 85.7 2197608.
## 4 romance 89 6611482.