Q1 <- movies %>%
rename(movie_title = Film , release_year = Year)
head(Q1)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
Q2 <- Q1 %>%
select(movie_title , release_year , Genre , Profitability , `Rotten Tomatoes %`)
head(Q2)
## # A tibble: 6 × 5
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… 2008 Roma… 1.75 64
## 2 Youth in Revolt 2010 Come… 1.09 68
## 3 You Will Meet a Tall Dar… 2010 Come… 1.21 43
## 4 When in Rome 2010 Come… 0 15
## 5 What Happens in Vegas 2008 Come… 6.27 28
## 6 Water For Elephants 2011 Drama 3.08 60
Q3 <- Q2 %>%
filter(release_year > 2000 & `Rotten Tomatoes %` > 80)
head(Q3)
## # A tibble: 6 × 5
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animati… 2.90 96
## 2 Waitress 2007 Romance 11.1 89
## 3 Tangled 2010 Animati… 1.37 89
## 4 Rachel Getting Married 2008 Drama 1.38 85
## 5 My Week with Marilyn 2011 Drama 0.826 83
## 6 Midnight in Paris 2011 Romence 8.74 93
Q4 <- Q3 %>%
mutate(Profitability_millions = Profitability * 1e6)
head(Q4)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animati… 2.90 96
## 2 Waitress 2007 Romance 11.1 89
## 3 Tangled 2010 Animati… 1.37 89
## 4 Rachel Getting Married 2008 Drama 1.38 85
## 5 My Week with Marilyn 2011 Drama 0.826 83
## 6 Midnight in Paris 2011 Romence 8.74 93
## # ℹ 1 more variable: Profitability_millions <dbl>
Q5 <- Q4 %>%
arrange(desc(`Rotten Tomatoes %`) , Profitability_millions)
head(Q5)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Enchanted 2007 Comedy 4.01 93
## 3 Midnight in Paris 2011 Romence 8.74 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Tangled 2010 Animation 1.37 89
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: Profitability_millions <dbl>
Q6 <- movies %>%
rename(movie_title = Film , release_year = Year) %>%
select(movie_title , release_year , Genre , Profitability , `Rotten Tomatoes %`) %>%
filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
mutate(Profitability_millions = Profitability * 1e6) %>%
arrange(desc(`Rotten Tomatoes %`) , Profitability_millions)
head(Q6)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Enchanted 2007 Comedy 4.01 93
## 3 Midnight in Paris 2011 Romence 8.74 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Tangled 2010 Animation 1.37 89
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: Profitability_millions <dbl>
According to the resulting data from Question 6, there is a moderate positive correlation between the Rotten Tomatoes % and Profitability, meaning the best movies aren’t necessarily the most popular.
# Define a correction dictionary
genre_corrections <- c(
"romence" = "romance",
"comedy" = "comedy", # Ensures lowercase consistency
"drama" = "drama",
"animation" = "animation"
)
summary_df <- Q6 %>%
mutate(
Genre = tolower(Genre), # Normalize case
Genre = recode(Genre, !!!genre_corrections) # Correct known typos
) %>%
group_by(Genre) %>%
summarize(
avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
avg_profitability_millions = mean(Profitability_millions, na.rm = TRUE)
)
print(summary_df)
## # A tibble: 4 × 3
## Genre avg_rating avg_profitability_millions
## <chr> <dbl> <dbl>
## 1 animation 92.5 2130856.
## 2 comedy 88.8 5802503.
## 3 drama 85.7 2197608.
## 4 romance 89 6611482.