library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename (): (4 points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”

q1  <- movies %>%
  rename (movie_title = Film , release_year = Year)
head (q1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability

q2 <- q1 %>%
  select(movie_title, release_year, Genre, Profitability)
head(q2)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3: Filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80

q3 <- q1 %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80)
head(q3)
## # A tibble: 6 × 8
##   movie_title            Genre    `Lead Studio` `Audience score %` Profitability
##   <chr>                  <chr>    <chr>                      <dbl>         <dbl>
## 1 WALL-E                 Animati… Disney                        89         2.90 
## 2 Waitress               Romance  Independent                   67        11.1  
## 3 Tangled                Animati… Disney                        88         1.37 
## 4 Rachel Getting Married Drama    Independent                   61         1.38 
## 5 My Week with Marilyn   Drama    The Weinstei…                 84         0.826
## 6 Midnight in Paris      Romence  Sony                          84         8.74 
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

4:mutate(): (4 points)

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars

q4 <- movies %>%
  mutate(Profitability_Millions = Profitability*1000000)
head(q4)
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Zack… Roma… The Weinstei…                 70          1.75                  64
## 2 Yout… Come… The Weinstei…                 52          1.09                  68
## 3 You … Come… Independent                   35          1.21                  43
## 4 When… Come… Disney                        44          0                     15
## 5 What… Come… Fox                           72          6.27                  28
## 6 Wate… Drama 20th Century…                 72          3.08                  60
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_Millions <dbl>

5: arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

q5 <- q4 %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_Millions))
head(q5)
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 WALL… Anim… Disney                        89          2.90                  96
## 2 Midn… Rome… Sony                          84          8.74                  93
## 3 Ench… Come… Disney                        80          4.01                  93
## 4 Knoc… Come… Universal                     83          6.64                  91
## 5 Wait… Roma… Independent                   67         11.1                   89
## 6 A Se… Drama Universal                     64          4.38                  89
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_Millions <dbl>

6: Combining Functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

combo <- movies %>% # then
  rename(movie_title = Film , release_year = Year) %>%
  select(movie_title , release_year , Genre , Profitability , `Rotten Tomatoes %`) %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_Millions = Profitability*1000000) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_Millions))
head(combo)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_Millions <dbl>

7: Interpret question 6 (1 point)

From the resulting data, are the best movies the most popular?

From the resulting data, we learn that the best movies are not always the most popular. For example, the “Waitress” had the highest popularity, but it has an 89% rotten tomato score, and the movie “WALL-E” has the lowest popularity, and a 96% rotten tomato score.

8: Extra Credit (4 points)

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

q8 <- q4 %>%
  mutate(Genre = tolower(Genre),   # Convert all genre names to lowercase
         Genre = recode(Genre,      # Fix common spelling errors
                        "romence" = "romance",
                        "comdy" = "comedy")) %>%
  group_by(Genre) %>%
  summarize(
    avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    avg_profitability_Millions = mean(Profitability_Millions, na.rm = TRUE)
  )

q8
## # A tibble: 6 × 3
##   Genre     avg_rating avg_profitability_Millions
##   <chr>          <dbl>                      <dbl>
## 1 action          11                     1245333.
## 2 animation       74.2                   3759414.
## 3 comedy          43.0                   3851160.
## 4 drama           51.5                   8407218.
## 5 fantasy         73                     1783944.
## 6 romance         46.3                   4079972.