Rename the “Film” column to “movie_title” and “Year” to “release_year”.
one <- movies %>%
rename(movie_title = Film , release_year = Year)
head(one)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability
two <- one %>%
select(movie_title, release_year, Genre, Profitability)
head(two)
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80
three <- one %>%
select(movie_title, release_year, Genre, Profitability , `Rotten Tomatoes %`) %>%
filter(release_year > 2000, `Rotten Tomatoes %` > 80)
head(three)
## # A tibble: 6 × 5
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animati… 2.90 96
## 2 Waitress 2007 Romance 11.1 89
## 3 Tangled 2010 Animati… 1.37 89
## 4 Rachel Getting Married 2008 Drama 1.38 85
## 5 My Week with Marilyn 2011 Drama 0.826 83
## 6 Midnight in Paris 2011 Romence 8.74 93
Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.
four <- three %>%
mutate(Profitability_millions = Profitability * 1000000)
head(four)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animati… 2.90 96
## 2 Waitress 2007 Romance 11.1 89
## 3 Tangled 2010 Animati… 1.37 89
## 4 Rachel Getting Married 2008 Drama 1.38 85
## 5 My Week with Marilyn 2011 Drama 0.826 83
## 6 Midnight in Paris 2011 Romence 8.74 93
## # ℹ 1 more variable: Profitability_millions <dbl>
Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))
five <- four %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(five)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Midnight in Paris 2011 Romence 8.74 93
## 3 Enchanted 2007 Comedy 4.01 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Waitress 2007 Romance 11.1 89
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: Profitability_millions <dbl>
Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.
six <- movies %>%
rename(movie_title = Film , release_year = Year) %>%
select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>%
mutate(Profitability_millions = Profitability * 1000000) %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(six)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Midnight in Paris 2011 Romence 8.74 93
## 3 Enchanted 2007 Comedy 4.01 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Waitress 2007 Romance 11.1 89
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: Profitability_millions <dbl>
From the resulting data, are the best movies the most popular?
We can measure the best movies through financial success (profitability) and popularity through the rotten tomatoes ratings. Although most of the most financially successful movies have a high rotten tomatoes rating, financial success does not guarantee popularity. For instance, Waitress with a rotten tomatoes rating of 89% had 11 million dollars of profit, but Wall-E with a rotten tomatoes of 96% had lower finanical success of 2 millions dollars.
Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().
five1 <- five %>%
mutate(Genre = case_when(
Genre == "Romence" ~ "Romance",
Genre == "comedy" ~ "Comedy",
TRUE ~ Genre))
genre_summary <- five1 %>%
group_by(Genre) %>%
summarize(
avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
avg_profitability_millions = mean(Profitability_millions, na.rm = TRUE))
head(genre_summary)
## # A tibble: 4 × 3
## Genre avg_rating avg_profitability_millions
## <chr> <dbl> <dbl>
## 1 Animation 92.5 2130856.
## 2 Comedy 88.8 5802503.
## 3 Drama 85.7 2197608.
## 4 Romance 89 6611482.