library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
q1 <- movies %>%
rename(movie_title = Film,
release_year = Year)
head(q1)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
q2 <- movies %>%
rename(movie_title = Film,
release_year = Year) %>%
select(movie_title, release_year, Genre, Profitability)
print(head(q2))
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
q3 <- movies %>%
rename(movie_title = Film,
release_year = Year) %>%
filter(release_year > 2000 & `Rotten Tomatoes %` > 80)
print(q3)
## # A tibble: 12 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animat… Disney 89 2.90
## 2 Waitress Romance Independent 67 11.1
## 3 Tangled Animat… Disney 88 1.37
## 4 Rachel Getting Married Drama Independent 61 1.38
## 5 My Week with Marilyn Drama The Weinstei… 84 0.826
## 6 Midnight in Paris Romence Sony 84 8.74
## 7 Knocked Up Comedy Universal 83 6.64
## 8 Jane Eyre Romance Universal 77 0
## 9 Enchanted Comedy Disney 80 4.01
## 10 Beginners Comedy Independent 80 4.47
## 11 A Serious Man Drama Universal 64 4.38
## 12 (500) Days of Summer comedy Fox 81 8.10
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
q4 <- movies %>%
mutate(Profitability_Millions = Profitability*1e6) %>%
select(Profitability_Millions)
print(q4)
## # A tibble: 77 × 1
## Profitability_Millions
## <dbl>
## 1 1747542.
## 2 1090000
## 3 1211818.
## 4 0
## 5 6267647.
## 6 3081421.
## 7 2896019.
## 8 11089742.
## 9 5000
## 10 4184038.
## # ℹ 67 more rows
q5 <- movies %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability))
head(q5)
## # A tibble: 6 × 8
## Film Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
## <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 WALL… Anim… Disney 89 2.90 96
## 2 Midn… Rome… Sony 84 8.74 93
## 3 Ench… Come… Disney 80 4.01 93
## 4 Knoc… Come… Universal 83 6.64 91
## 5 Wait… Roma… Independent 67 11.1 89
## 6 A Se… Drama Universal 64 4.38 89
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>
q6 <- movies %>%
filter(Year>2000, `Rotten Tomatoes %`>80) %>%
select(Film,Year,Genre,Profitability,) %>%
mutate(Profitability_Millions = Profitability*1e6) %>%
arrange(desc(Profitability_Millions))
head(q6)
## # A tibble: 6 × 5
## Film Year Genre Profitability Profitability_Millions
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 Waitress 2007 Romance 11.1 11089742.
## 2 Midnight in Paris 2011 Romence 8.74 8744706.
## 3 (500) Days of Summer 2009 comedy 8.10 8096000
## 4 Knocked Up 2007 Comedy 6.64 6636402.
## 5 Beginners 2011 Comedy 4.47 4471875
## 6 A Serious Man 2009 Drama 4.38 4382857.
#The best movies are usually the most popular, although it depends on the audience score.
#Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().
q8 <- movies %>%
mutate(Profitability_millions = Profitability*1e6) %>%
select(Genre, `Rotten Tomatoes %`, Profitability_millions)
Genre_Summary <- q8 %>%
group_by(Genre) %>%
summarize(
avg_rotten_tomatoes = mean(`Rotten Tomatoes %`, na.rm = TRUE),
avg_profitability = mean(Profitability_millions, na.rm = TRUE))
head(Genre_Summary)
## # A tibble: 6 × 3
## Genre avg_rotten_tomatoes avg_profitability
## <chr> <dbl> <dbl>
## 1 Action 11 1245333.
## 2 Animation 74.2 3759414.
## 3 Comdy 13 2649068.
## 4 Comedy 42.7 3776946.
## 5 Drama 51.5 8407218.
## 6 Fantasy 73 1783944.