Measurement Paper Analyses

load(file='/Users/meganwilliams/Desktop/Research/HANDLS Data/MeasurementData.rdata')
load(file='/Users/meganwilliams/Desktop/Research/HANDLS Data/MeasurementData1.rdata')

Model 1 (No Interactions)

Model1.1 = lm(MCLcountry~Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + sHealthNum, MeasurementData1,x=T)

summary(Model1.1)
## 
## Call:
## lm(formula = MCLcountry ~ Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + sHealthNum, data = MeasurementData1, 
##     x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
##  -5.02  -1.10   0.12   1.24   6.34 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)
## (Intercept)     4.46492    0.34868   12.81  < 2e-16
## Race1          -0.32012    0.08453   -3.79  0.00016
## Sex1            0.00116    0.08290    0.01  0.98882
## Educ            0.07244    0.01510    4.80  1.7e-06
## Employment011   0.09868    0.09382    1.05  0.29304
## acasiincomx01  -0.30926    0.09608   -3.22  0.00131
## Neighborhood02 -0.13306    0.04003   -3.32  0.00090
## CES            -0.03624    0.00394   -9.19  < 2e-16
## sHealthNum      0.23306    0.05874    3.97  7.5e-05
## 
## Residual standard error: 1.86 on 2068 degrees of freedom
## Multiple R-squared:  0.139,  Adjusted R-squared:  0.135 
## F-statistic: 41.7 on 8 and 2068 DF,  p-value: <2e-16

Model 2 (Three-Way Interactions)

Model2.1 = lm(MCLcountry~Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + sHealthNum + Race*Sex*Employment01 + Race*Employment01 + Sex*Employment01 + Race*Sex*Educ + Race*Educ + Sex*Educ + Race*Sex*acasiincomx01 + Race*acasiincomx01 + Sex*acasiincomx01 + Race*Sex*Neighborhood02 + Race*Neighborhood02 + Sex*Neighborhood02 + Race*Sex*CES + Race*CES + Sex*CES + Race*Sex + Race*Sex*sHealthNum + Race*sHealthNum + Sex*sHealthNum, MeasurementData1,x=T)

summary(Model2.1)
## 
## Call:
## lm(formula = MCLcountry ~ Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + sHealthNum + Race * 
##     Sex * Employment01 + Race * Employment01 + Sex * Employment01 + 
##     Race * Sex * Educ + Race * Educ + Sex * Educ + Race * Sex * 
##     acasiincomx01 + Race * acasiincomx01 + Sex * acasiincomx01 + 
##     Race * Sex * Neighborhood02 + Race * Neighborhood02 + Sex * 
##     Neighborhood02 + Race * Sex * CES + Race * CES + Sex * CES + 
##     Race * Sex + Race * Sex * sHealthNum + Race * sHealthNum + 
##     Sex * sHealthNum, data = MeasurementData1, x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.219 -1.256  0.957  1.707  6.782 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                5.228184   0.647223    8.08  1.1e-15
## Race1                     -1.092569   0.936281   -1.17    0.243
## Sex1                      -1.071636   0.951077   -1.13    0.260
## Educ                       0.014546   0.030565    0.48    0.634
## Employment011             -0.269148   0.160750   -1.67    0.094
## acasiincomx01             -0.285510   0.164538   -1.74    0.083
## Neighborhood02            -0.020615   0.072775   -0.28    0.777
## CES                       -0.040907   0.006560   -6.24  5.5e-10
## sHealthNum                 0.184586   0.098449    1.87    0.061
## Race1:Sex1                 0.994944   1.386640    0.72    0.473
## Race1:Employment011        0.285723   0.247827    1.15    0.249
## Sex1:Employment011         0.452684   0.241926    1.87    0.061
## Race1:Educ                 0.057420   0.041631    1.38    0.168
## Sex1:Educ                  0.045305   0.046237    0.98    0.327
## Race1:acasiincomx01       -0.002442   0.257137   -0.01    0.992
## Sex1:acasiincomx01        -0.030215   0.247132   -0.12    0.903
## Race1:Neighborhood02      -0.162155   0.105634   -1.54    0.125
## Sex1:Neighborhood02       -0.122386   0.109517   -1.12    0.264
## Race1:CES                  0.000337   0.009914    0.03    0.973
## Sex1:CES                   0.016772   0.010865    1.54    0.123
## Race1:sHealthNum           0.119439   0.160208    0.75    0.456
## Sex1:sHealthNum            0.131014   0.152698    0.86    0.391
## Race1:Sex1:Employment011   0.351025   0.390795    0.90    0.369
## Race1:Sex1:Educ           -0.004484   0.061595   -0.07    0.942
## Race1:Sex1:acasiincomx01  -0.165671   0.400278   -0.41    0.679
## Race1:Sex1:Neighborhood02  0.122944   0.162485    0.76    0.449
## Race1:Sex1:CES            -0.011682   0.016620   -0.70    0.482
## Race1:Sex1:sHealthNum     -0.389633   0.243209   -1.60    0.109
## 
## Residual standard error: 1.84 on 2049 degrees of freedom
## Multiple R-squared:  0.159,  Adjusted R-squared:  0.148 
## F-statistic: 14.3 on 27 and 2049 DF,  p-value: <2e-16

Model 2 (Two-Way Interactions)

Model2.2 = lm(MCLcountry~Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + sHealthNum + Race * Educ + Race * Employment01 + Race * acasiincomx01 + Race * Neighborhood02 + Race * CES + Race*sHealthNum + Sex * Educ + Sex * Employment01 + Sex * acasiincomx01 + Sex * Neighborhood02 + Sex * CES + Sex*sHealthNum + Race * Sex, MeasurementData1, x=T)

summary(Model2.2)
## 
## Call:
## lm(formula = MCLcountry ~ Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + sHealthNum + Race * 
##     Educ + Race * Employment01 + Race * acasiincomx01 + Race * 
##     Neighborhood02 + Race * CES + Race * sHealthNum + Sex * Educ + 
##     Sex * Employment01 + Sex * acasiincomx01 + Sex * Neighborhood02 + 
##     Sex * CES + Sex * sHealthNum + Race * Sex, data = MeasurementData1, 
##     x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.134 -1.247 -0.206  1.710  6.793 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           5.13934    0.57245    8.98  < 2e-16
## Race1                -0.81851    0.69645   -1.18   0.2400
## Sex1                 -0.78632    0.68989   -1.14   0.2545
## Educ                  0.01610    0.02644    0.61   0.5426
## Employment011        -0.32036    0.14635   -2.19   0.0287
## acasiincomx01        -0.26618    0.14974   -1.78   0.0756
## Neighborhood02       -0.04357    0.06498   -0.67   0.5026
## CES                  -0.03931    0.00602   -6.53  8.2e-11
## sHealthNum            0.24235    0.08980    2.70   0.0070
## Race1:Educ            0.05774    0.03059    1.89   0.0593
## Race1:Employment011   0.41807    0.19131    2.19   0.0290
## Race1:acasiincomx01  -0.07870    0.19635   -0.40   0.6886
## Race1:Neighborhood02 -0.11352    0.08003   -1.42   0.1562
## Race1:CES            -0.00387    0.00793   -0.49   0.6255
## Race1:sHealthNum     -0.04253    0.12017   -0.35   0.7234
## Sex1:Educ             0.03883    0.03025    1.28   0.1994
## Sex1:Employment011    0.58096    0.18985    3.06   0.0022
## Sex1:acasiincomx01   -0.08718    0.19401   -0.45   0.6532
## Sex1:Neighborhood02  -0.06504    0.08062   -0.81   0.4199
## Sex1:CES              0.01221    0.00820    1.49   0.1366
## Sex1:sHealthNum      -0.01769    0.11837   -0.15   0.8812
## Race1:Sex1            0.32938    0.17117    1.92   0.0545
## 
## Residual standard error: 1.84 on 2055 degrees of freedom
## Multiple R-squared:  0.157,  Adjusted R-squared:  0.148 
## F-statistic: 18.2 on 21 and 2055 DF,  p-value: <2e-16

Model 2 (Only Significant Interactions)

FINAL MODEL

Model2.3 = lm(MCLcountry~Race + Sex + Educ + Employment01 + acasiincomx01 + Neighborhood02 + CES + sHealthNum + Race * Educ + Race * Employment01 + Sex * Employment01 + Race * Sex , MeasurementData1,x=T)

summary(Model2.3)
## 
## Call:
## lm(formula = MCLcountry ~ Race + Sex + Educ + Employment01 + 
##     acasiincomx01 + Neighborhood02 + CES + sHealthNum + Race * 
##     Educ + Race * Employment01 + Sex * Employment01 + Race * 
##     Sex, data = MeasurementData1, x = T)
## 
## Residuals:
## MCL: SES Standing in country 
##    Min     1Q Median     3Q    Max 
## -5.113 -1.178  0.299  1.976  6.672 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)          5.41746    0.40985   13.22  < 2e-16
## Race1               -1.66290    0.36574   -4.55  5.8e-06
## Sex1                -0.54115    0.14325   -3.78  0.00016
## Educ                 0.02623    0.02237    1.17  0.24116
## Employment011       -0.33917    0.13621   -2.49  0.01285
## acasiincomx01       -0.32854    0.09542   -3.44  0.00059
## Neighborhood02      -0.12586    0.03980   -3.16  0.00159
## CES                 -0.03680    0.00392   -9.38  < 2e-16
## sHealthNum           0.21275    0.05849    3.64  0.00028
## Race1:Educ           0.07192    0.02865    2.51  0.01213
## Race1:Employment011  0.43764    0.17459    2.51  0.01227
## Sex1:Employment011   0.61675    0.16782    3.68  0.00024
## Race1:Sex1           0.38476    0.16706    2.30  0.02138
## 
## Residual standard error: 1.84 on 2064 degrees of freedom
## Multiple R-squared:  0.154,  Adjusted R-squared:  0.149 
## F-statistic: 31.3 on 12 and 2064 DF,  p-value: <2e-16

Model 2 Interaction Plots

Race*Education

## Loading required package: colorspace
## 
## Attaching package: 'effects'
## 
## The following object is masked from 'package:car':
## 
##     Prestige

plot of chunk unnamed-chunk-5

## 
## Attaching package: 'psych'
## 
## The following object is masked from 'package:Hmisc':
## 
##     describe
## 
## The following object is masked from 'package:ggplot2':
## 
##     %+%
## 
## The following object is masked from 'package:car':
## 
##     logit

Sex*Employment

plot of chunk unnamed-chunk-7

Race*Employment

plot of chunk unnamed-chunk-8

Race*Sex

plot of chunk unnamed-chunk-9