Load the movies dataset

movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. Rename(): Rename columns “Film” to “movie_title” and “Year” to “release_year”

q1 <- movies %>%
  rename(movie_title = Film, release_year = Year)

head(q1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. Select(): Create a new dataframe with selected columns

q2 <- q1 %>%
  select(movie_title, release_year, Genre, Profitability)

head(q2)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3. Filter(): Filter movies released after 2000 with Rotten Tomatoes % higher than 80

q3 <- q1 %>%
  filter(release_year > 2000, `Rotten Tomatoes %` > 80)

head(q3)
## # A tibble: 6 × 8
##   movie_title            Genre    `Lead Studio` `Audience score %` Profitability
##   <chr>                  <chr>    <chr>                      <dbl>         <dbl>
## 1 WALL-E                 Animati… Disney                        89         2.90 
## 2 Waitress               Romance  Independent                   67        11.1  
## 3 Tangled                Animati… Disney                        88         1.37 
## 4 Rachel Getting Married Drama    Independent                   61         1.38 
## 5 My Week with Marilyn   Drama    The Weinstei…                 84         0.826
## 6 Midnight in Paris      Romence  Sony                          84         8.74 
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

4. Mutate(): Add a column converting Profitability to millions

q4 <- q1 %>%
  mutate(Profitability_millions = Profitability / 1e6)

head(q4)
## # A tibble: 6 × 9
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_millions <dbl>

5. Arrange(): Sort by Rotten Tomatoes % (descending) and then Profitability (descending)

q5 <- q4 %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))

head(q5)
## # A tibble: 6 × 9
##   movie_title       Genre     `Lead Studio` `Audience score %` Profitability
##   <chr>             <chr>     <chr>                      <dbl>         <dbl>
## 1 WALL-E            Animation Disney                        89          2.90
## 2 Midnight in Paris Romence   Sony                          84          8.74
## 3 Enchanted         Comedy    Disney                        80          4.01
## 4 Knocked Up        Comedy    Universal                     83          6.64
## 5 Waitress          Romance   Independent                   67         11.1 
## 6 A Serious Man     Drama     Universal                     64          4.38
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_millions <dbl>

6. Combining functions: Chain operations together

q6 <- movies %>%
  filter(Year > 2000, `Rotten Tomatoes %` > 80) %>%
  select(Film, Year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  mutate(Profitability_millions = Profitability / 1e6) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))

head(q6)
## # A tibble: 6 × 6
##   Film       Year Genre Profitability `Rotten Tomatoes %` Profitability_millions
##   <chr>     <dbl> <chr>         <dbl>               <dbl>                  <dbl>
## 1 WALL-E     2008 Anim…          2.90                  96             0.00000290
## 2 Midnight…  2011 Rome…          8.74                  93             0.00000874
## 3 Enchanted  2007 Come…          4.01                  93             0.00000401
## 4 Knocked …  2007 Come…          6.64                  91             0.00000664
## 5 Waitress   2007 Roma…         11.1                   89             0.0000111 
## 6 A Seriou…  2009 Drama          4.38                  89             0.00000438

7. Interpretation of results

High-rated movies (Rotten Tomatoes % > 80) are not always the most profitable. Some lower-rated movies have higher profitability due to audience appeal, marketing, or franchise success.

EXTRA CREDIT: Group movies by Genre and calculate average ratings and profitability

movies <- movies %>%
  mutate(Profitability_millions = Profitability / 1e6)

Genre_Summary <- movies %>%
  group_by(Genre) %>%
  summarize(
    Avg_Rotten_Tomatoes = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    Avg_Profitability_millions = mean(Profitability_millions, na.rm = TRUE)
  )

head(Genre_Summary)
## # A tibble: 6 × 3
##   Genre     Avg_Rotten_Tomatoes Avg_Profitability_millions
##   <chr>                   <dbl>                      <dbl>
## 1 Action                   11                   0.00000125
## 2 Animation                74.2                 0.00000376
## 3 Comdy                    13                   0.00000265
## 4 Comedy                   42.7                 0.00000378
## 5 Drama                    51.5                 0.00000841
## 6 Fantasy                  73                   0.00000178