library(EstimationTools)

Sebaran Normal

set.seed(1701)
data   <- rnorm(n = 10000, mean = 12, sd = 5)
hist(data, nclass=50)

## Diduga sebagai sebaran Normal
dugaan <- maxlogL(x = data, dist = 'dnorm', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##        AIC      BIC
##   60718.69 60733.11
## _______________________________________________________________
##      Estimate  Std. Error Z value Pr(>|z|)    
## mean  12.01788    0.05037   238.6   <2e-16 ***
## sd     5.03692    0.03562   141.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---
## Diduga sebagai sebaran Gamma, bandingkan nilai AIC atau BIC-nya
dugaan <- maxlogL(x = data, dist = 'dgamma', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: 'optim' failed 
## _______________________________________________________________
##   AIC BIC
##   Inf Inf
## _______________________________________________________________
##       Estimate  Std. Error Z value Pr(>|z|)
## shape         1         NA      NA       NA
## rate          1         NA      NA       NA
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---

Sebaran Gamma

set.seed(1701)
data   <- rgamma(n = 10000, shape = 5, rate = 10)
hist(data, nclass=50)

## Diduga sebagai sebaran Gamma
dugaan <- maxlogL(x = data, dist = 'dgamma', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC      BIC
##   -3004.141 -2989.72
## _______________________________________________________________
##       Estimate  Std. Error Z value Pr(>|z|)    
## shape   5.00455    0.06855   73.01   <2e-16 ***
## rate   10.01929    0.14436   69.41   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---
## Diduga sebagai sebaran Normal, bandingkan nilai AIC atau BIC-nya
dugaan <- maxlogL(x = data, dist = 'dnorm', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC       BIC
##   -1529.547 -1515.127
## _______________________________________________________________
##      Estimate  Std. Error Z value Pr(>|z|)    
## mean  0.499492   0.002241   222.9   <2e-16 ***
## sd    0.224110   0.001585   141.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---

Sebaran Beta

set.seed(701)
data   <- rbeta(n = 10000, shape1 = 15, shape2 = 9, ncp = 0)
hist(data, nclass=50)

## Diduga sebagai sebaran Beta
dugaan <- maxlogL(x = data, dist = 'dbeta', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC       BIC
##   -18315.77 -18308.56
## _______________________________________________________________
##        Estimate  Std. Error Z value Pr(>|z|)    
## shape1   14.8279     0.2087   71.06   <2e-16 ***
## shape2    8.9396     0.1244   71.86   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---
## Diduga sebagai sebaran Gamma, bandingkan nilai AIC atau BIC-nya
dugaan <- maxlogL(x = data, dist = 'dgamma', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC      BIC
##   -17843.82 -17829.4
## _______________________________________________________________
##       Estimate  Std. Error Z value Pr(>|z|)    
## shape   38.9305     0.5482   71.01   <2e-16 ***
## rate    62.4022     0.8844   70.56   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---
## Diduga sebagai sebaran Normal, bandingkan nilai AIC atau BIC-nya
dugaan <- maxlogL(x = data, dist = 'dnorm', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC       BIC
##   -18204.93 -18190.51
## _______________________________________________________________
##      Estimate  Std. Error Z value Pr(>|z|)    
## mean 0.6238640  0.0009736   640.8   <2e-16 ***
## sd   0.0973555  0.0006881   141.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---