Questao 1
MRT_1F <- c(517.1468515630205, 85.13094142168089, 30.333207896694553, 12.694776264558937, 3.3041601673945418, 1.1823111717498882, 1.1892293502386786)
MRT_3F <- c(156.68929936163462, 11.540837783562276, 0.4512835621696538, 0.4509797929766453, 0.4502068233039181, 0.4496185276300172, 0.4543157082191288)
MRT_5F <- c(83.90319666471157, 0.3068151086494968, 0.30522314133037304, 0.3072588968084928, 0.30655265997285697, 0.3055812715727718, 0.3053297166713006)
MRT_10F <- c(29.55430642951759, 0.19832832665772515, 0.1971923924717474, 0.19796648905716516, 0.19615594370806338, 0.2034569237883263, 0.19617420889447737)
MRT_15F <- c(11.317736530583566, 0.167364215666193, 0.16172168266811013, 0.16701085329580515, 0.1598052657153692, 0.1645934043532696, 0.16216563797118075)
MRT_sem_F <- c(11.93430909937736, 0.6095414637034009, 0.6060645101029295, 0.612167181646899, 0.6146761002685637, 0.6096747087200697, 0.6125810476877268)
clock <- c(0.1, 0.5, 1, 1.5, 2, 2.5, 3)
layout(matrix(1:6, nrow=2, byrow=TRUE))
generate_barplot <- function(data, title) {
barplot(data, names.arg=clock, log="y", col=c("#E6E6E6", "#666666"), xlab="Clock", ylab="MRT (log scale)", main=title)
}
generate_barplot(MRT_1F, "MRT 1F")
generate_barplot(MRT_3F, "MRT 3F")
generate_barplot(MRT_5F, "MRT 5F")
generate_barplot(MRT_10F, "MRT 10F")
generate_barplot(MRT_15F, "MRT 15F")
plot(clock, MRT_sem_F, type="o", col="blue", xlab="Clock", ylab="MRT", main="MRT sem F")

questao 2
library(ggplot2)
library(tidyr)
data <- data.frame(
QualityRating = c("good", "very good", "excelent"),
`10-19` = c(53.8, 43.6, 2.6),
`20-29` = c(33.9, 54.2, 11.9),
`30-39` = c(2.6, 60.5, 36.8),
`40-49` = c(0.0, 21.4, 78.6)
)
data_long <- pivot_longer(data, cols = -QualityRating, names_to = "PriceRange", values_to = "Percentage")
ggplot(data_long, aes(x = PriceRange, y = Percentage, fill = QualityRating)) +
geom_bar(stat = "identity") +
labs(
title = "qualidade de refeicao de acordo com categorias de precos",
x = "Faixa de Preco",
y = "Porcentagem",
fill = "Avaliacao da Qualidade"
) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

questao 3
library(ggplot2)
data(airquality)
may_data <- subset(airquality, Month == 5)
may_data$Temp_Celsius <- (may_data$Temp - 32) / 1.8
ggplot(may_data, aes(x = Temp_Celsius)) +
geom_histogram(aes(y = after_stat(density)),
bins = 20,
fill = "skyblue",
color = "black",
alpha = 0.7) +
geom_density(alpha = 0.2, fill = "red") +
labs(
title = "Histograma das Temperaturas de Maio (Celsius)",
x = "Temperatura (C)",
y = "Densidade"
) +
theme_minimal()

questao 4
sales <- read.table("https://training-course-material.com/images/8/8f/Sales.txt", header = TRUE)
sales$Percentage <- (sales$SALES / sum(sales$SALES)) * 100
colors <- c("lightblue", "lightgreen", "lightcoral", "lightyellow", "lightpink", "lightgray")
pie(sales$SALES,
labels = paste(sales$COUNTRY, "\n", round(sales$Percentage, 1), "%"),
col = colors,
main = "Porcentagem total de Vendas por Pais")
legend("topright",
legend = sales$COUNTRY,
fill = colors,
title = "Paises",
bty = "n")

questao 5
data(InsectSprays)
boxplot(count ~ spray, data = InsectSprays,
outline = FALSE,
col = "purple",
main = "Contagem de insetos por tipo de inseticida",
xlab = "Tipo de inseticida",
ylab = "Contagem de insetos",
border = "black")

questao 6
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
process_data <- function(file) {
data <- read.csv(file, stringsAsFactors = FALSE)
data$currentTime <- as.numeric(difftime(strptime(data$currentTime, format="%Y-%m-%d %H:%M:%S"),
strptime(data$currentTime[1], format="%Y-%m-%d %H:%M:%S"),
units="hours"))
data$usedMemory <- sapply(data$usedMemory, function(x) {
if (grepl("TB", x)) {
as.numeric(gsub("TB", "", x)) * 1000000
} else if (grepl("GB", x)) {
as.numeric(gsub("GB", "", x)) * 1024
} else if (grepl("MB", x)) {
as.numeric(gsub("MB", "", x))
} else {
as.numeric(x)
}
})
return(data)
}
files <- c(
"C:/Users/TemisWin10/Downloads/monitoringCloudData/monitoringCloudData_0.1.csv",
"C:/Users/TemisWin10/Downloads/monitoringCloudData/monitoringCloudData_0.5.csv",
"C:/Users/TemisWin10/Downloads/monitoringCloudData/monitoringCloudData_1.csv",
"C:/Users/TemisWin10/Downloads/monitoringCloudData/monitoringCloudData_NONE.csv"
)
names(files) <- c("0.1", "0.5", "1", "NONE")
data_list <- lapply(files, process_data)
par(mfrow=c(2, 2))
for (name in names(data_list)) {
data <- data_list[[name]]
plot(data$currentTime, data$usedMemory, type="l", col="blue",
xlab="Tempo (horas)", ylab="Memória Usada (MB)",
main=paste("Uso de Memória -", name))
}

Questao 7
library(dplyr)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
netflix_data <- read.csv("C:/Users/TemisWin10/Downloads/netflix_titles.csv", stringsAsFactors = FALSE)
filtered_data <- netflix_data %>%
filter(!is.na(country) & !grepl(",", country)) %>%
count(country, sort = TRUE) %>%
top_n(10, n)
fig7 <- plot_ly(filtered_data, labels = ~country, values = ~n, type = 'pie', textinfo = 'label+percent') %>%
layout(title = "Top 10 Paises com mais conteudo na netflix")
fig7
Questão 8
fig8 <- plot_ly(
type = 'table',
header = list(values = c("Pais", "Total de conteudos"),
fill = list(color = "grey"),
font = list(color = "white", size = 14),
align = "center"),
cells = list(values = rbind(filtered_data$country, filtered_data$n),
align = "center",
font = list(size = 12))
)
fig8
Questão 9
netflix_data$decade <- (netflix_data$release_year %/% 10) * 10
decade_data <- netflix_data %>%
filter(!is.na(decade)) %>%
count(decade, type) %>%
spread(type, n, fill = 0)
colnames(decade_data) <- c("decade", "Movie", "TV_Show")
fig9 <- plot_ly(decade_data, x = ~decade) %>%
add_trace(y = ~Movie, type = 'scatter', mode = 'lines+markers', name = 'Filmes', line = list(color = 'yellow')) %>%
add_trace(y = ~TV_Show, type = 'scatter', mode = 'lines+markers', name = 'Series', line = list(color = 'blue')) %>%
layout(title = "Quantidade de Conteudo por Decada", xaxis = list(title = "Decada"), yaxis = list(title = "Quantidade"))
fig9
Questão 10
filtered_movies <- netflix_data %>%
filter(release_year >= 2000 & release_year <= 2010, type == "Movie") %>%
mutate(primary_genre = sapply(strsplit(listed_in, ","), `[`, 1)) %>%
filter(primary_genre %in% c("Dramas", "Action & Adventure", "Comedies")) %>%
count(release_year, primary_genre)
fig10 <- plot_ly(filtered_movies, x = ~release_year, y = ~n, color = ~primary_genre, type = 'bar') %>%
layout(title = "Quantidade de Filmes por Genero (2000-2010)", xaxis = list(title = "Ano"), yaxis = list(title = "Quantidade"), barmode = 'group')
fig10