The following are my Honors Thesis mediation analyses using a composite score for maternal sensitivity.

## Load dataset

library(haven)
baby2.0comp <- read_sav("TheaWulff_DatasetSensComp.sav")

## Rename columns for readability using dplyr
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
baby2.0comp <- baby2.0comp %>%
  rename(DERS = DERStotmA,
         SensitivityComposite = OverallMaternalSensitivity,
         ITSEA_dysreg = ITSEAdysTmD1,
         ITSEA_exter = ITSEAextTmD1,
         ITSEA_inter = ITSEAintTmD1,
         ITSEA_comp = ITSEAcompTmD1)

The goal is to run a mediation analysis with the following variables.

I will also use full information maximum likelihood to account for missing data.

Let’s load the packages we need to achieve this goal.

library(mediation)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## Loading required package: Matrix
## Loading required package: mvtnorm
## Loading required package: sandwich
## mediation: Causal Mediation Analysis
## Version: 4.5.0
library(lavaan)
## This is lavaan 0.6-18
## lavaan is FREE software! Please report any bugs.

ITSEA Dysregulation

Let’s specify the mediation module for the first of four analyses: ITSEA_dysreg

mediation_model <- '
  # Mediator model
  SensitivityComposite ~ a * DERS
  
  # Outcome model
  ITSEA_dysreg ~ b * SensitivityComposite + c * DERS
  
  # Indirect effect (mediation effect)
  indirect_effect := a * b
  
  # Direct effect
  direct_effect := c
  
  # Total effect
  total_effect := indirect_effect + direct_effect
'

## Account for missing data using Full Information Maximum Likelihood (FIML).
## Possible through the Lavaan package

fit <- sem(mediation_model, data = baby2.0comp, missing = "fiml")
## Warning: lavaan->lav_data_full():  
##    2 cases were deleted due to missing values in exogenous variable(s), while 
##    fixed.x = TRUE.
summary(fit, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-18 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           383         385
##   Number of missing patterns                         4            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                11.467
##   Degrees of freedom                                 3
##   P-value                                        0.009
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1403.331
##   Loglikelihood unrestricted model (H1)      -1403.331
##                                                       
##   Akaike (AIC)                                2820.661
##   Bayesian (BIC)                              2848.298
##   Sample-size adjusted Bayesian (SABIC)       2826.088
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SensitivityComposite ~                                                      
##     DERS       (a)         -0.003    0.002   -1.458    0.145   -0.003   -0.093
##   ITSEA_dysreg ~                                                              
##     SnstvtyCmp (b)         -0.512    1.149   -0.446    0.656   -0.512   -0.030
##     DERS       (c)          0.085    0.028    3.000    0.003    0.085    0.177
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SensitvtyCmpst    3.787    0.150   25.275    0.000    3.787    5.323
##    .ITSEA_dysreg     38.560    4.939    7.807    0.000   38.560    3.187
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SensitvtyCmpst    0.502    0.044   11.446    0.000    0.502    0.991
##    .ITSEA_dysreg    141.561   11.800   11.997    0.000  141.561    0.967
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect_effct    0.001    0.003    0.425    0.671    0.001    0.003
##     direct_effect     0.085    0.028    3.000    0.003    0.085    0.177
##     total_effect      0.086    0.028    3.059    0.002    0.086    0.180

The indirect effect is not significant (p=0.671), meaning that mediation (indirect effect) between the DERS and ITSEA_dysreg via the mediator (SensitivityComposite) is not significant.

The direct effect is significant (p=0.003). DERS has a significant direct impact on ITSEA_dysreg.

ITSEA Externalizing

Let’s specify the mediation module for the second of four analyses: ITSEA_exter

mediation_model <- '
  # Mediator model
  SensitivityComposite ~ a * DERS
  
  # Outcome model
  ITSEA_exter ~ b * SensitivityComposite + c * DERS
  
  # Indirect effect (mediation effect)
  indirect_effect := a * b
  
  # Direct effect
  direct_effect := c
  
  # Total effect
  total_effect := indirect_effect + direct_effect
'
fit <- sem(mediation_model, data = baby2.0comp, missing = "fiml")
## Warning: lavaan->lav_data_full():  
##    2 cases were deleted due to missing values in exogenous variable(s), while 
##    fixed.x = TRUE.
summary(fit, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-18 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           383         385
##   Number of missing patterns                         4            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                13.012
##   Degrees of freedom                                 3
##   P-value                                        0.005
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1073.641
##   Loglikelihood unrestricted model (H1)      -1073.641
##                                                       
##   Akaike (AIC)                                2161.283
##   Bayesian (BIC)                              2188.919
##   Sample-size adjusted Bayesian (SABIC)       2166.709
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SensitivityComposite ~                                                      
##     DERS       (a)         -0.003    0.002   -1.429    0.153   -0.003   -0.091
##   ITSEA_exter ~                                                               
##     SnstvtyCmp (b)         -1.489    0.921   -1.617    0.106   -1.489   -0.132
##     DERS       (c)          0.064    0.022    2.902    0.004    0.064    0.201
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SensitvtyCmpst    3.784    0.150   25.259    0.000    3.784    5.316
##    .ITSEA_exter      48.642    3.821   12.730    0.000   48.642    6.044
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SensitvtyCmpst    0.502    0.044   11.432    0.000    0.502    0.992
##    .ITSEA_exter      60.716    5.726   10.604    0.000   60.716    0.937
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect_effct    0.004    0.004    1.080    0.280    0.004    0.012
##     direct_effect     0.064    0.022    2.902    0.004    0.064    0.201
##     total_effect      0.068    0.022    3.050    0.002    0.068    0.213

The indirect effect is not significant (p=0.280), meaning that mediation (indirect effect) between the DERS and ITSEA_exter via the mediator (SensitivityComposite) is not significant.

The direct effect is significant (p=0.004). DERS has a significant direct impact on ITSEA_exter.

ITSEA Internalizing

Let’s specify the mediation module for the third of four analyses: ITSEA_inter

mediation_model <- '
  # Mediator model
  SensitivityComposite ~ a * DERS
  
  # Outcome model
  ITSEA_inter ~ b * SensitivityComposite + c * DERS
  
  # Indirect effect (mediation effect)
  indirect_effect := a * b
  
  # Direct effect
  direct_effect := c
  
  # Total effect
  total_effect := indirect_effect + direct_effect
'
fit <- sem(mediation_model, data = baby2.0comp, missing = "fiml")
## Warning: lavaan->lav_data_full():  
##    2 cases were deleted due to missing values in exogenous variable(s), while 
##    fixed.x = TRUE.
summary(fit, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-18 ended normally after 20 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           383         385
##   Number of missing patterns                         4            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                10.856
##   Degrees of freedom                                 3
##   P-value                                        0.013
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1361.168
##   Loglikelihood unrestricted model (H1)      -1361.168
##                                                       
##   Akaike (AIC)                                2736.337
##   Bayesian (BIC)                              2763.973
##   Sample-size adjusted Bayesian (SABIC)       2741.763
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SensitivityComposite ~                                                      
##     DERS       (a)         -0.003    0.002   -1.470    0.142   -0.003   -0.093
##   ITSEA_inter ~                                                               
##     SnstvtyCmp (b)          1.576    1.025    1.537    0.124    1.576    0.103
##     DERS       (c)          0.069    0.025    2.703    0.007    0.069    0.160
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SensitvtyCmpst    3.790    0.150   25.315    0.000    3.790    5.327
##    .ITSEA_inter      38.494    4.438    8.674    0.000   38.494    3.544
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SensitvtyCmpst    0.502    0.044   11.446    0.000    0.502    0.991
##    .ITSEA_inter     114.071    9.583   11.904    0.000  114.071    0.967
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect_effct   -0.004    0.004   -1.057    0.291   -0.004   -0.010
##     direct_effect     0.069    0.025    2.703    0.007    0.069    0.160
##     total_effect      0.065    0.025    2.545    0.011    0.065    0.150

The indirect effect is not significant (p=0.291), meaning that mediation (indirect effect) between the DERS and ITSEA_inter via the mediator (SensitivityComposite) is not significant.

The direct effect is significant (p=0.007). DERS has a significant direct impact on ITSEA_inter.

ITSEA Competence

Let’s specify the mediation module for the fourth of four analyses: ITSEA_comp

mediation_model <- '
  # Mediator model
  SensitivityComposite ~ a * DERS
  
  # Outcome model
  ITSEA_comp ~ b * SensitivityComposite + c * DERS
  
  # Indirect effect (mediation effect)
  indirect_effect := a * b
  
  # Direct effect
  direct_effect := c
  
  # Total effect
  total_effect := indirect_effect + direct_effect
'
fit <- sem(mediation_model, data = baby2.0comp, missing = "fiml")
## Warning: lavaan->lav_data_full():  
##    2 cases were deleted due to missing values in exogenous variable(s), while 
##    fixed.x = TRUE.
summary(fit, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-18 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           383         385
##   Number of missing patterns                         4            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                 2.269
##   Degrees of freedom                                 3
##   P-value                                        0.519
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1085.990
##   Loglikelihood unrestricted model (H1)      -1085.990
##                                                       
##   Akaike (AIC)                                2185.979
##   Bayesian (BIC)                              2213.616
##   Sample-size adjusted Bayesian (SABIC)       2191.406
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SensitivityComposite ~                                                      
##     DERS       (a)         -0.003    0.002   -1.447    0.148   -0.003   -0.092
##   ITSEA_comp ~                                                                
##     SnstvtyCmp (b)          0.261    1.061    0.246    0.805    0.261    0.020
##     DERS       (c)         -0.009    0.027   -0.324    0.746   -0.009   -0.023
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SensitvtyCmpst    3.787    0.150   25.266    0.000    3.787    5.322
##    .ITSEA_comp       46.536    4.477   10.394    0.000   46.536    4.879
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SensitvtyCmpst    0.502    0.044   11.446    0.000    0.502    0.992
##    .ITSEA_comp       90.867    8.684   10.464    0.000   90.867    0.999
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect_effct   -0.001    0.003   -0.244    0.807   -0.001   -0.002
##     direct_effect    -0.009    0.027   -0.324    0.746   -0.009   -0.023
##     total_effect     -0.010    0.027   -0.347    0.728   -0.010   -0.025

The indirect effect is not significant (p=0.807), meaning that mediation (indirect effect) between the DERS and ITSEA_comp via the mediator (SensitivityComposite) is not significant.

The direct effect is also note significant (p=0.746). DERS does not have a significant direct impact on ITSEA_comp.

Conclusion: The mediation (indirect effect) between the DERS and all four of the ITSEA outcomes via the mediator (SensitivityComposite) is not significant.