library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Question 1

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

q1 <- movies %>%
  rename(movie_title = Film , 
         release_year = Year)

head(q1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 2

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

q2 <- q1 %>%
  select(movie_title, release_year, Genre, Profitability)
print(head(q2))
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

Question 3

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

q3 <- q1 %>%
  filter(release_year > 2008 & `Rotten Tomatoes %` > 80)
print(q3)
## # A tibble: 7 × 8
##   movie_title          Genre     `Lead Studio`  `Audience score %` Profitability
##   <chr>                <chr>     <chr>                       <dbl>         <dbl>
## 1 Tangled              Animation Disney                         88         1.37 
## 2 My Week with Marilyn Drama     The Weinstein…                 84         0.826
## 3 Midnight in Paris    Romence   Sony                           84         8.74 
## 4 Jane Eyre            Romance   Universal                      77         0    
## 5 Beginners            Comedy    Independent                    80         4.47 
## 6 A Serious Man        Drama     Universal                      64         4.38 
## 7 (500) Days of Summer comedy    Fox                            81         8.10 
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 4

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

q4 <- q1 %>%
  mutate(Profitability_millions = Profitability * 1000000)
print(select(q4, Profitability, Profitability_millions))
## # A tibble: 77 × 2
##    Profitability Profitability_millions
##            <dbl>                  <dbl>
##  1         1.75                1747542.
##  2         1.09                1090000 
##  3         1.21                1211818.
##  4         0                         0 
##  5         6.27                6267647.
##  6         3.08                3081421.
##  7         2.90                2896019.
##  8        11.1                11089742.
##  9         0.005                  5000 
## 10         4.18                4184038.
## # ℹ 67 more rows

Question 5

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order.

q5 <- q4 %>%
  arrange(desc(`Rotten Tomatoes %`) , desc(Profitability_millions))
print(select(q5, `Rotten Tomatoes %`, Profitability_millions))
## # A tibble: 77 × 2
##    `Rotten Tomatoes %` Profitability_millions
##                  <dbl>                  <dbl>
##  1                  96               2896019.
##  2                  93               8744706.
##  3                  93               4005737.
##  4                  91               6636402.
##  5                  89              11089742.
##  6                  89               4382857.
##  7                  89               1365692.
##  8                  87               8096000 
##  9                  85               1384167.
## 10                  85                     0 
## # ℹ 67 more rows

Question 6

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

q6 <- movies %>%
  rename(movie_title = Film , 
         release_year = Year) %>% 
  select(movie_title, release_year, Genre, Profitability , `Rotten Tomatoes %` ) %>%
  filter(release_year > 2008 & `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability * 1000000)  %>%
  arrange(desc(`Rotten Tomatoes %`) , desc(Profitability_millions))
head(q6)
## # A tibble: 6 × 6
##   movie_title          release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                       <dbl> <chr>             <dbl>               <dbl>
## 1 Midnight in Paris            2011 Romence            8.74                  93
## 2 A Serious Man                2009 Drama              4.38                  89
## 3 Tangled                      2010 Animation          1.37                  89
## 4 (500) Days of Summer         2009 comedy             8.10                  87
## 5 Jane Eyre                    2011 Romance            0                     85
## 6 Beginners                    2011 Comedy             4.47                  84
## # ℹ 1 more variable: Profitability_millions <dbl>

Question 7

Extra Credit

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

EC <- q6 %>%
  group_by(Genre) %>%
  summarize(
    Avg_Rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    Avg_Profitability = mean(Profitability_millions, na.rm = TRUE))
head(EC)
## # A tibble: 6 × 3
##   Genre     Avg_Rating Avg_Profitability
##   <chr>          <dbl>             <dbl>
## 1 Animation         89          1365692.
## 2 Comedy            84          4471875 
## 3 Drama             86          2604329.
## 4 Romance           85                0 
## 5 Romence           93          8744706.
## 6 comedy            87          8096000