library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)


# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1 (Rename) the “Film” column to “movie_title” and “Year” to “release_year”.

Rename_movies <- movies %>%
  rename(movie_title = Film,
         release_year = Year)

head(Rename_movies)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2 (Select) Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

selected_movies <- Rename_movies %>%
  select(movie_title, release_year, Genre, Profitability)

head(selected_movies)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3 Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

filter_movies <- Rename_movies%>%
  filter(release_year > 2000, `Rotten Tomatoes %`>80 )

altered_Filtered <- filter_movies %>%
select(`Rotten Tomatoes %`, release_year)

print(altered_Filtered)
## # A tibble: 12 × 2
##    `Rotten Tomatoes %` release_year
##                  <dbl>        <dbl>
##  1                  96         2008
##  2                  89         2007
##  3                  89         2010
##  4                  85         2008
##  5                  83         2011
##  6                  93         2011
##  7                  91         2007
##  8                  85         2011
##  9                  93         2007
## 10                  84         2011
## 11                  89         2009
## 12                  87         2009
     ##used select because these two variables werent showing up in markup

4 Mutate Add a new column called “Profitability_millions” converts the Profitability to millions of dollars.

mutate_movies <- movies %>% 
  mutate(Profitability_millions= Profitability * 1000000)

head(mutate_movies)
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Zack… Roma… The Weinstei…                 70          1.75                  64
## 2 Yout… Come… The Weinstei…                 52          1.09                  68
## 3 You … Come… Independent                   35          1.21                  43
## 4 When… Come… Disney                        44          0                     15
## 5 What… Come… Fox                           72          6.27                  28
## 6 Wate… Drama 20th Century…                 72          3.08                  60
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_millions <dbl>

5 (arrange) by Rotten Tomatoes % in descending order, then Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

arrange_movies <- mutate_movies %>% 
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
  
head(arrange_movies)
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 WALL… Anim… Disney                        89          2.90                  96
## 2 Midn… Rome… Sony                          84          8.74                  93
## 3 Ench… Come… Disney                        80          4.01                  93
## 4 Knoc… Come… Universal                     83          6.64                  91
## 5 Wait… Roma… Independent                   67         11.1                   89
## 6 A Se… Drama Universal                     64          4.38                  89
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_millions <dbl>

6 Combine all

combine_movies <- movies%>%
  rename(movie_title = Film,
         release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability,`Rotten Tomatoes %`, `Worldwide Gross`)%>%
  filter(release_year > 2000, `Rotten Tomatoes %`>80 )%>%
  mutate(Profitability_millions= Profitability * 1000000)%>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))

head(combine_movies)
## # A tibble: 6 × 7
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Profitability_millions <dbl>

Ans: There seems to be a correlation based on worldwide gross, as Walle is number one with the highest gross, but the second highest gross is in the bottom half of the resulting data.

XC) Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre.

summary_movies <- movies%>%
  mutate(Genre = recode(Genre,
                        "Comdy" = "Comedy",
                        "comedy" = "Comedy",
                        "Romence" = "Romance",
                        "romance" = "Romance")) %>%
  group_by(Genre)%>%
  summarize( AvgRating= mean(`Rotten Tomatoes %`),
             AvgProfitability_millions= mean(Profitability * 1000000))
  
print((summary_movies))
## # A tibble: 6 × 3
##   Genre     AvgRating AvgProfitability_millions
##   <chr>         <dbl>                     <dbl>
## 1 Action         11                    1245333.
## 2 Animation      74.2                  3759414.
## 3 Comedy         43.0                  3851160.
## 4 Drama          51.5                  8407218.
## 5 Fantasy        73                    1783944.
## 6 Romance        46.3                  4079972.