library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
1. rename(): (4 points)
Rename the “Film” column to “movie_title” and “Year” to
“release_year”.
q1 <- movies %>%
rename(movie_title = Film,
release_year = Year)
head(q1)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
2. select(): (4 points)
Create a new data frame with only the columns: movie_title,
release_year, Genre, Profitability,
q2 <- q1 %>%
select(movie_title, release_year, Genre, Profitability)
head(q2)
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
3. filter(): (4 points)
Filter the data set to include only movies released after 2000 with
a Rotten Tomatoes % higher than 80.
q3 <- q2 %>%
filter(release_year > 2000 & 'Rotten Tomatoes %' > 80)
head(q3)
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
4. mutate(): (4 points)
Add a new column called “Profitability_millions” that converts the
Profitability to millions of dollars.
q4 <- q3 %>%
mutate(Profitability_millions = Profitability/1e6)
head(q4)
## # A tibble: 6 × 5
## movie_title release_year Genre Profitability Profitability_millions
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a … 2008 Roma… 1.75 0.00000175
## 2 Youth in Revolt 2010 Come… 1.09 0.00000109
## 3 You Will Meet a Tall … 2010 Come… 1.21 0.00000121
## 4 When in Rome 2010 Come… 0 0
## 5 What Happens in Vegas 2008 Come… 6.27 0.00000627
## 6 Water For Elephants 2011 Drama 3.08 0.00000308
5. arrange(): (3 points)
Sort the filtered data set by Rotten Tomatoes % in descending order,
and then by Profitability in descending order. five <- four %>%
arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))
q5 <- q4 %>%
arrange(desc('Audience score %'),desc(Profitability_millions))
head(q5)
## # A tibble: 6 × 5
## movie_title release_year Genre Profitability Profitability_millions
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 Fireproof 2008 Drama 66.9 0.0000669
## 2 High School Musical 3… 2008 Come… 22.9 0.0000229
## 3 The Twilight Saga: Ne… 2009 Drama 14.2 0.0000142
## 4 Waitress 2007 Roma… 11.1 0.0000111
## 5 Twilight 2008 Roma… 10.2 0.0000102
## 6 Mamma Mia! 2008 Come… 9.23 0.00000923
6. Combining functions: (3 points)
7. Interpret question 6 (1 point)
From the resulting data, are the best movies the most popular?
The best Movies are not the most popular, as shown by Fireproof,
which is the highest grossing and most popular movie but doesn’t have
the highest Rotten Tomatoes score
Create a summary dataframe that shows the average rating and
Profitability_millions for movies by Genre. Hint: You’ll need to use
group_by() and summarize().
library(dplyr)
movies <- movies %>%
rename(Audience_score = `Audience score %`)
EX <- movies %>%
mutate(Profitability_millions = Profitability / 1e6) %>%
group_by(Genre) %>%
summarize(
Avg_Rating = mean(Audience_score, na.rm = TRUE),
Avg_Profitability_millions = mean(Profitability_millions, na.rm = TRUE)
)
head(EX)
## # A tibble: 6 × 3
## Genre Avg_Rating Avg_Profitability_millions
## <chr> <dbl> <dbl>
## 1 Action 45 0.00000125
## 2 Animation 70.2 0.00000376
## 3 Comdy 61 0.00000265
## 4 Comedy 61.0 0.00000378
## 5 Drama 67.2 0.00000841
## 6 Fantasy 81 0.00000178