02/09/2025
data <- read.csv("C:/Users/rbada/Downloads/productivity+prediction+of+garment+employees/garments_worker_productivity.csv")
print(data)
## date quarter department day team targeted_productivity smv
## 1 1/1/2015 Quarter1 sweing Thursday 8 0.80 26.16
## 2 1/1/2015 Quarter1 finishing Thursday 1 0.75 3.94
## 3 1/1/2015 Quarter1 sweing Thursday 11 0.80 11.41
## 4 1/1/2015 Quarter1 sweing Thursday 12 0.80 11.41
## 5 1/1/2015 Quarter1 sweing Thursday 6 0.80 25.90
## 6 1/1/2015 Quarter1 sweing Thursday 7 0.80 25.90
## 7 1/1/2015 Quarter1 finishing Thursday 2 0.75 3.94
## 8 1/1/2015 Quarter1 sweing Thursday 3 0.75 28.08
## 9 1/1/2015 Quarter1 sweing Thursday 2 0.75 19.87
## 10 1/1/2015 Quarter1 sweing Thursday 1 0.75 28.08
## 11 1/1/2015 Quarter1 sweing Thursday 9 0.70 28.08
## 12 1/1/2015 Quarter1 sweing Thursday 10 0.75 19.31
## 13 1/1/2015 Quarter1 sweing Thursday 5 0.80 11.41
## 14 1/1/2015 Quarter1 finishing Thursday 10 0.65 3.94
## 15 1/1/2015 Quarter1 finishing Thursday 8 0.75 2.90
## 16 1/1/2015 Quarter1 finishing Thursday 4 0.75 3.94
## 17 1/1/2015 Quarter1 finishing Thursday 7 0.80 2.90
## 18 1/1/2015 Quarter1 sweing Thursday 4 0.65 23.69
## 19 1/1/2015 Quarter1 finishing Thursday 11 0.70 4.15
## 20 1/3/2015 Quarter1 finishing Saturday 4 0.80 4.15
## 21 1/3/2015 Quarter1 finishing Saturday 11 0.75 2.90
## 22 1/3/2015 Quarter1 finishing Saturday 9 0.80 4.15
## 23 1/3/2015 Quarter1 finishing Saturday 3 0.75 3.94
## 24 1/3/2015 Quarter1 finishing Saturday 1 0.80 3.94
## 25 1/3/2015 Quarter1 sweing Saturday 1 0.80 28.08
## 26 1/3/2015 Quarter1 sweing Saturday 3 0.80 28.08
## 27 1/3/2015 Quarter1 sweing Saturday 8 0.80 26.16
## 28 1/3/2015 Quarter1 sweing Saturday 12 0.80 26.16
## 29 1/3/2015 Quarter1 sweing Saturday 11 0.80 11.61
## 30 1/3/2015 Quarter1 sweing Saturday 5 0.80 11.61
## 31 1/3/2015 Quarter1 sweing Saturday 6 0.80 25.90
## 32 1/3/2015 Quarter1 sweing Saturday 7 0.80 25.90
## 33 1/3/2015 Quarter1 sweing Saturday 10 0.75 19.31
## 34 1/3/2015 Quarter1 finishing Saturday 2 0.80 4.15
## 35 1/3/2015 Quarter1 sweing Saturday 2 0.75 19.87
## 36 1/3/2015 Quarter1 finishing Saturday 10 0.70 4.15
## 37 1/3/2015 Quarter1 sweing Saturday 4 0.70 23.69
## 38 1/3/2015 Quarter1 sweing Saturday 9 0.70 28.08
## 39 1/3/2015 Quarter1 finishing Saturday 8 0.80 2.90
## 40 1/3/2015 Quarter1 finishing Saturday 7 0.80 3.94
## 41 1/4/2015 Quarter1 finishing Sunday 3 0.75 4.15
## 42 1/4/2015 Quarter1 finishing Sunday 9 0.80 3.94
## 43 1/4/2015 Quarter1 finishing Sunday 1 0.80 3.94
## 44 1/4/2015 Quarter1 sweing Sunday 6 0.80 11.61
## 45 1/4/2015 Quarter1 finishing Sunday 4 0.80 3.94
## 46 1/4/2015 Quarter1 sweing Sunday 9 0.80 26.16
## 47 1/4/2015 Quarter1 sweing Sunday 7 0.80 25.90
## 48 1/4/2015 Quarter1 sweing Sunday 8 0.80 25.90
## 49 1/4/2015 Quarter1 sweing Sunday 4 0.80 28.08
## 50 1/4/2015 Quarter1 sweing Sunday 1 0.80 26.16
## 51 1/4/2015 Quarter1 sweing Sunday 2 0.80 28.08
## 52 1/4/2015 Quarter1 sweing Sunday 12 0.80 11.61
## 53 1/4/2015 Quarter1 finishing Sunday 2 0.80 3.94
## 54 1/4/2015 Quarter1 finishing Sunday 10 0.70 3.94
## 55 1/4/2015 Quarter1 sweing Sunday 11 0.75 19.31
## 56 1/4/2015 Quarter1 sweing Sunday 3 0.75 19.87
## 57 1/4/2015 Quarter1 sweing Sunday 10 0.70 28.08
## 58 1/4/2015 Quarter1 finishing Sunday 8 0.80 2.90
## 59 1/4/2015 Quarter1 finishing Sunday 7 0.80 2.90
## 60 1/4/2015 Quarter1 sweing Sunday 5 0.70 45.67
## 61 1/4/2015 Quarter1 finishing Sunday 11 0.75 4.15
## 62 1/5/2015 Quarter1 finishing Monday 1 0.80 3.94
## 63 1/5/2015 Quarter1 finishing Monday 11 0.80 3.94
## 64 1/5/2015 Quarter1 finishing Monday 4 0.80 3.94
## 65 1/5/2015 Quarter1 finishing Monday 3 0.75 4.15
## 66 1/5/2015 Quarter1 sweing Monday 9 0.80 26.16
## 67 1/5/2015 Quarter1 finishing Monday 9 0.80 2.90
## 68 1/5/2015 Quarter1 finishing Monday 2 0.80 3.94
## 69 1/5/2015 Quarter1 sweing Monday 7 0.80 25.90
## 70 1/5/2015 Quarter1 sweing Monday 8 0.80 25.90
## 71 1/5/2015 Quarter1 sweing Monday 1 0.80 26.16
## 72 1/5/2015 Quarter1 sweing Monday 11 0.80 19.31
## 73 1/5/2015 Quarter1 sweing Monday 6 0.80 11.61
## 74 1/5/2015 Quarter1 sweing Monday 12 0.80 11.61
## 75 1/5/2015 Quarter1 sweing Monday 2 0.80 28.08
## 76 1/5/2015 Quarter1 sweing Monday 4 0.80 28.08
## 77 1/5/2015 Quarter1 finishing Monday 10 0.75 2.90
## 78 1/5/2015 Quarter1 finishing Monday 5 0.60 2.90
## 79 1/5/2015 Quarter1 sweing Monday 10 0.75 28.08
## 80 1/5/2015 Quarter1 sweing Monday 3 0.75 19.87
## 81 1/5/2015 Quarter1 finishing Monday 7 0.80 3.94
## 82 1/5/2015 Quarter1 finishing Monday 8 0.80 2.90
## 83 1/5/2015 Quarter1 sweing Monday 5 0.60 21.98
## 84 1/6/2015 Quarter1 finishing Tuesday 4 0.80 3.94
## 85 1/6/2015 Quarter1 finishing Tuesday 1 0.80 3.94
## 86 1/6/2015 Quarter1 finishing Tuesday 3 0.75 4.15
## 87 1/6/2015 Quarter1 finishing Tuesday 11 0.80 4.15
## 88 1/6/2015 Quarter1 finishing Tuesday 9 0.80 3.94
## 89 1/6/2015 Quarter1 sweing Tuesday 1 0.80 26.16
## 90 1/6/2015 Quarter1 sweing Tuesday 9 0.80 26.16
## 91 1/6/2015 Quarter1 finishing Tuesday 10 0.75 3.94
## 92 1/6/2015 Quarter1 finishing Tuesday 2 0.80 3.94
## 93 1/6/2015 Quarter1 sweing Tuesday 2 0.80 28.08
## 94 1/6/2015 Quarter1 sweing Tuesday 4 0.80 28.08
## 95 1/6/2015 Quarter1 sweing Tuesday 3 0.80 19.87
## 96 1/6/2015 Quarter1 sweing Tuesday 12 0.80 11.61
## 97 1/6/2015 Quarter1 sweing Tuesday 7 0.80 25.90
## 98 1/6/2015 Quarter1 sweing Tuesday 8 0.80 25.90
## 99 1/6/2015 Quarter1 sweing Tuesday 6 0.80 11.61
## 100 1/6/2015 Quarter1 sweing Tuesday 10 0.75 28.08
## 101 1/6/2015 Quarter1 sweing Tuesday 11 0.75 19.31
## 102 1/6/2015 Quarter1 finishing Tuesday 8 0.80 2.90
## 103 1/6/2015 Quarter1 sweing Tuesday 5 0.65 21.98
## 104 1/6/2015 Quarter1 finishing Tuesday 7 0.80 2.90
## 105 1/7/2015 Quarter1 finishing Wednesday 1 0.80 3.94
## 106 1/7/2015 Quarter1 finishing Wednesday 9 0.80 3.94
## 107 1/7/2015 Quarter1 sweing Wednesday 1 0.80 26.16
## 108 1/7/2015 Quarter1 sweing Wednesday 9 0.80 26.16
## 109 1/7/2015 Quarter1 sweing Wednesday 8 0.80 25.90
## 110 1/7/2015 Quarter1 finishing Wednesday 3 0.75 4.15
## 111 1/7/2015 Quarter1 finishing Wednesday 4 0.80 3.94
## 112 1/7/2015 Quarter1 finishing Wednesday 2 0.80 3.94
## 113 1/7/2015 Quarter1 finishing Wednesday 10 0.75 3.94
## 114 1/7/2015 Quarter1 finishing Wednesday 7 0.80 2.90
## 115 1/7/2015 Quarter1 sweing Wednesday 2 0.80 28.08
## 116 1/7/2015 Quarter1 sweing Wednesday 4 0.80 28.08
## 117 1/7/2015 Quarter1 sweing Wednesday 6 0.80 11.41
## 118 1/7/2015 Quarter1 sweing Wednesday 3 0.80 19.87
## 119 1/7/2015 Quarter1 sweing Wednesday 12 0.80 11.61
## 120 1/7/2015 Quarter1 sweing Wednesday 7 0.80 25.90
## 121 1/7/2015 Quarter1 sweing Wednesday 10 0.75 28.08
## 122 1/7/2015 Quarter1 sweing Wednesday 5 0.70 21.98
## 123 1/7/2015 Quarter1 finishing Wednesday 8 0.80 2.90
## 124 1/7/2015 Quarter1 finishing Wednesday 6 0.80 2.90
## 125 1/7/2015 Quarter1 sweing Wednesday 11 0.80 31.83
## 126 1/7/2015 Quarter1 finishing Wednesday 5 0.70 4.15
## 127 1/8/2015 Quarter2 finishing Thursday 1 0.80 3.94
## 128 1/8/2015 Quarter2 finishing Thursday 4 0.80 3.94
## 129 1/8/2015 Quarter2 sweing Thursday 9 0.80 26.16
## 130 1/8/2015 Quarter2 finishing Thursday 9 0.80 3.94
## 131 1/8/2015 Quarter2 sweing Thursday 1 0.80 26.16
## 132 1/8/2015 Quarter2 sweing Thursday 4 0.80 28.08
## 133 1/8/2015 Quarter2 sweing Thursday 7 0.80 25.90
## 134 1/8/2015 Quarter2 sweing Thursday 8 0.80 25.90
## 135 1/8/2015 Quarter2 finishing Thursday 2 0.80 3.94
## 136 1/8/2015 Quarter2 finishing Thursday 5 0.70 4.15
## 137 1/8/2015 Quarter2 sweing Thursday 2 0.80 28.08
## 138 1/8/2015 Quarter2 sweing Thursday 3 0.80 19.87
## 139 1/8/2015 Quarter2 sweing Thursday 12 0.80 11.61
## 140 1/8/2015 Quarter2 sweing Thursday 6 0.80 11.41
## 141 1/8/2015 Quarter2 sweing Thursday 10 0.75 28.08
## 142 1/8/2015 Quarter2 finishing Thursday 10 0.75 3.94
## 143 1/8/2015 Quarter2 finishing Thursday 8 0.80 2.90
## 144 1/8/2015 Quarter2 finishing Thursday 3 0.75 4.15
## 145 1/8/2015 Quarter2 finishing Thursday 7 0.80 2.90
## 146 1/8/2015 Quarter2 finishing Thursday 11 0.80 4.15
## 147 1/8/2015 Quarter2 sweing Thursday 11 0.35 12.52
## 148 1/8/2015 Quarter2 sweing Thursday 5 0.70 42.41
## 149 1/10/2015 Quarter2 finishing Saturday 1 0.80 3.94
## 150 1/10/2015 Quarter2 finishing Saturday 3 0.75 4.15
## 151 1/10/2015 Quarter2 finishing Saturday 4 0.80 3.94
## 152 1/10/2015 Quarter2 finishing Saturday 9 0.80 3.94
## 153 1/10/2015 Quarter2 sweing Saturday 9 0.80 26.16
## 154 1/10/2015 Quarter2 sweing Saturday 7 0.80 25.90
## 155 1/10/2015 Quarter2 sweing Saturday 8 0.80 25.90
## 156 1/10/2015 Quarter2 finishing Saturday 10 0.80 3.94
## 157 1/10/2015 Quarter2 finishing Saturday 11 0.80 4.15
## 158 1/10/2015 Quarter2 finishing Saturday 2 0.80 3.94
## 159 1/10/2015 Quarter2 sweing Saturday 4 0.80 28.08
## 160 1/10/2015 Quarter2 sweing Saturday 2 0.80 28.08
## 161 1/10/2015 Quarter2 sweing Saturday 12 0.80 11.61
## 162 1/10/2015 Quarter2 sweing Saturday 6 0.80 11.41
## 163 1/10/2015 Quarter2 sweing Saturday 1 0.80 26.16
## 164 1/10/2015 Quarter2 sweing Saturday 10 0.80 28.08
## 165 1/10/2015 Quarter2 sweing Saturday 3 0.75 19.87
## 166 1/10/2015 Quarter2 sweing Saturday 11 0.50 12.52
## 167 1/10/2015 Quarter2 finishing Saturday 7 0.80 2.90
## 168 1/10/2015 Quarter2 finishing Saturday 8 0.80 2.90
## 169 1/10/2015 Quarter2 sweing Saturday 5 0.50 20.79
## 170 1/10/2015 Quarter2 finishing Saturday 5 0.50 4.15
## 171 1/11/2015 Quarter2 finishing Sunday 3 0.75 4.15
## 172 1/11/2015 Quarter2 finishing Sunday 4 0.80 3.94
## 173 1/11/2015 Quarter2 sweing Sunday 9 0.80 26.16
## 174 1/11/2015 Quarter2 finishing Sunday 1 0.80 3.94
## 175 1/11/2015 Quarter2 finishing Sunday 9 0.80 3.94
## 176 1/11/2015 Quarter2 sweing Sunday 1 0.80 26.16
## 177 1/11/2015 Quarter2 sweing Sunday 7 0.80 25.90
## 178 1/11/2015 Quarter2 sweing Sunday 8 0.80 25.90
## 179 1/11/2015 Quarter2 finishing Sunday 10 0.80 3.94
## 180 1/11/2015 Quarter2 finishing Sunday 2 0.80 3.94
## 181 1/11/2015 Quarter2 sweing Sunday 6 0.80 11.41
## 182 1/11/2015 Quarter2 sweing Sunday 12 0.80 11.61
## 183 1/11/2015 Quarter2 sweing Sunday 2 0.80 28.08
## 184 1/11/2015 Quarter2 sweing Sunday 10 0.80 28.08
## 185 1/11/2015 Quarter2 sweing Sunday 3 0.80 19.87
## 186 1/11/2015 Quarter2 finishing Sunday 11 0.80 4.15
## 187 1/11/2015 Quarter2 finishing Sunday 8 0.80 2.90
## 188 1/11/2015 Quarter2 finishing Sunday 5 0.50 4.15
## 189 1/11/2015 Quarter2 sweing Sunday 11 0.60 12.52
## 190 1/11/2015 Quarter2 finishing Sunday 6 0.80 2.90
## 191 1/11/2015 Quarter2 finishing Sunday 7 0.80 2.90
## 192 1/11/2015 Quarter2 sweing Sunday 4 0.80 50.48
## 193 1/11/2015 Quarter2 sweing Sunday 5 0.60 20.79
## 194 1/12/2015 Quarter2 finishing Monday 1 0.80 3.94
## 195 1/12/2015 Quarter2 finishing Monday 4 0.35 4.30
## 196 1/12/2015 Quarter2 finishing Monday 3 0.80 4.15
## 197 1/12/2015 Quarter2 finishing Monday 2 0.80 3.94
## 198 1/12/2015 Quarter2 finishing Monday 9 0.80 3.94
## 199 1/12/2015 Quarter2 sweing Monday 1 0.80 26.16
## 200 1/12/2015 Quarter2 sweing Monday 9 0.80 26.16
## 201 1/12/2015 Quarter2 sweing Monday 7 0.80 25.90
## 202 1/12/2015 Quarter2 sweing Monday 8 0.80 25.90
## 203 1/12/2015 Quarter2 finishing Monday 6 0.80 2.90
## 204 1/12/2015 Quarter2 finishing Monday 5 0.65 4.15
## 205 1/12/2015 Quarter2 sweing Monday 3 0.80 19.87
## 206 1/12/2015 Quarter2 sweing Monday 6 0.80 11.41
## 207 1/12/2015 Quarter2 sweing Monday 12 0.80 11.61
## 208 1/12/2015 Quarter2 sweing Monday 2 0.80 28.08
## 209 1/12/2015 Quarter2 finishing Monday 8 0.80 2.90
## 210 1/12/2015 Quarter2 sweing Monday 10 0.80 50.48
## 211 1/12/2015 Quarter2 sweing Monday 5 0.65 20.79
## 212 1/12/2015 Quarter2 sweing Monday 11 0.65 12.52
## 213 1/12/2015 Quarter2 finishing Monday 7 0.80 2.90
## 214 1/12/2015 Quarter2 finishing Monday 11 0.80 4.15
## 215 1/12/2015 Quarter2 sweing Monday 4 0.35 22.40
## 216 1/12/2015 Quarter2 finishing Monday 10 0.80 3.94
## 217 1/13/2015 Quarter2 finishing Tuesday 4 0.35 4.30
## 218 1/13/2015 Quarter2 finishing Tuesday 1 0.80 3.94
## 219 1/13/2015 Quarter2 finishing Tuesday 10 0.80 3.94
## 220 1/13/2015 Quarter2 finishing Tuesday 3 0.80 4.15
## 221 1/13/2015 Quarter2 finishing Tuesday 9 0.80 3.94
## 222 1/13/2015 Quarter2 sweing Tuesday 1 0.80 26.16
## 223 1/13/2015 Quarter2 sweing Tuesday 9 0.80 26.16
## 224 1/13/2015 Quarter2 sweing Tuesday 8 0.80 25.90
## 225 1/13/2015 Quarter2 sweing Tuesday 7 0.80 25.90
## 226 1/13/2015 Quarter2 finishing Tuesday 5 0.65 4.15
## 227 1/13/2015 Quarter2 finishing Tuesday 2 0.80 3.94
## 228 1/13/2015 Quarter2 sweing Tuesday 6 0.80 11.61
## 229 1/13/2015 Quarter2 sweing Tuesday 12 0.80 11.61
## 230 1/13/2015 Quarter2 sweing Tuesday 2 0.80 28.08
## 231 1/13/2015 Quarter2 sweing Tuesday 3 0.80 42.27
## 232 1/13/2015 Quarter2 finishing Tuesday 8 0.80 2.90
## 233 1/13/2015 Quarter2 finishing Tuesday 7 0.80 2.90
## 234 1/13/2015 Quarter2 finishing Tuesday 11 0.80 4.15
## 235 1/13/2015 Quarter2 sweing Tuesday 11 0.70 27.13
## 236 1/13/2015 Quarter2 sweing Tuesday 5 0.70 20.79
## 237 1/13/2015 Quarter2 sweing Tuesday 4 0.50 22.40
## 238 1/13/2015 Quarter2 sweing Tuesday 10 0.35 22.40
## 239 1/14/2015 Quarter2 finishing Wednesday 11 0.80 4.15
## 240 1/14/2015 Quarter2 finishing Wednesday 4 0.35 4.30
## 241 1/14/2015 Quarter2 sweing Wednesday 7 0.80 25.90
## 242 1/14/2015 Quarter2 finishing Wednesday 1 0.80 3.94
## 243 1/14/2015 Quarter2 finishing Wednesday 5 0.65 4.15
## 244 1/14/2015 Quarter2 finishing Wednesday 9 0.80 3.94
## 245 1/14/2015 Quarter2 sweing Wednesday 9 0.80 26.16
## 246 1/14/2015 Quarter2 sweing Wednesday 8 0.80 25.90
## 247 1/14/2015 Quarter2 finishing Wednesday 7 0.80 2.90
## 248 1/14/2015 Quarter2 finishing Wednesday 3 0.80 4.15
## 249 1/14/2015 Quarter2 sweing Wednesday 12 0.80 11.61
## 250 1/14/2015 Quarter2 sweing Wednesday 6 0.80 11.61
## 251 1/14/2015 Quarter2 sweing Wednesday 1 0.80 26.16
## 252 1/14/2015 Quarter2 sweing Wednesday 5 0.70 20.79
## 253 1/14/2015 Quarter2 finishing Wednesday 8 0.80 2.90
## 254 1/14/2015 Quarter2 sweing Wednesday 4 0.60 22.40
## 255 1/14/2015 Quarter2 sweing Wednesday 10 0.50 22.40
## 256 1/14/2015 Quarter2 sweing Wednesday 11 0.35 14.61
## 257 1/14/2015 Quarter2 finishing Wednesday 10 0.80 3.94
## 258 1/14/2015 Quarter2 sweing Wednesday 2 0.80 51.02
## 259 1/14/2015 Quarter2 finishing Wednesday 2 0.80 3.94
## 260 1/15/2015 Quarter3 finishing Thursday 4 0.35 4.30
## 261 1/15/2015 Quarter3 finishing Thursday 10 0.80 3.94
## 262 1/15/2015 Quarter3 finishing Thursday 1 0.80 3.94
## 263 1/15/2015 Quarter3 finishing Thursday 5 0.65 4.15
## 264 1/15/2015 Quarter3 finishing Thursday 9 0.80 3.94
## 265 1/15/2015 Quarter3 sweing Thursday 1 0.80 26.16
## 266 1/15/2015 Quarter3 sweing Thursday 8 0.80 25.90
## 267 1/15/2015 Quarter3 sweing Thursday 7 0.80 25.90
## 268 1/15/2015 Quarter3 sweing Thursday 9 0.80 26.16
## 269 1/15/2015 Quarter3 sweing Thursday 6 0.80 11.61
## 270 1/15/2015 Quarter3 sweing Thursday 12 0.80 11.61
## 271 1/15/2015 Quarter3 sweing Thursday 5 0.70 20.79
## 272 1/15/2015 Quarter3 finishing Thursday 7 0.80 2.90
## 273 1/15/2015 Quarter3 sweing Thursday 3 0.50 22.52
## 274 1/15/2015 Quarter3 sweing Thursday 4 0.65 22.52
## 275 1/15/2015 Quarter3 finishing Thursday 8 0.80 2.90
## 276 1/15/2015 Quarter3 sweing Thursday 10 0.60 22.52
## 277 1/15/2015 Quarter3 sweing Thursday 11 0.50 14.89
## 278 1/15/2015 Quarter3 sweing Thursday 2 0.50 22.94
## 279 1/17/2015 Quarter3 finishing Saturday 5 0.65 4.15
## 280 1/17/2015 Quarter3 finishing Saturday 2 0.80 3.94
## 281 1/17/2015 Quarter3 finishing Saturday 10 0.80 3.94
## 282 1/17/2015 Quarter3 finishing Saturday 1 0.80 3.94
## 283 1/17/2015 Quarter3 finishing Saturday 9 0.80 3.94
## 284 1/17/2015 Quarter3 sweing Saturday 6 0.80 11.41
## 285 1/17/2015 Quarter3 sweing Saturday 12 0.80 11.61
## 286 1/17/2015 Quarter3 sweing Saturday 7 0.80 25.90
## 287 1/17/2015 Quarter3 sweing Saturday 8 0.80 25.90
## 288 1/17/2015 Quarter3 sweing Saturday 1 0.80 48.68
## 289 1/17/2015 Quarter3 sweing Saturday 9 0.80 26.16
## 290 1/17/2015 Quarter3 sweing Saturday 2 0.60 22.94
## 291 1/17/2015 Quarter3 sweing Saturday 4 0.70 22.52
## 292 1/17/2015 Quarter3 finishing Saturday 8 0.80 2.90
## 293 1/17/2015 Quarter3 finishing Saturday 7 0.80 2.90
## 294 1/17/2015 Quarter3 sweing Saturday 10 0.65 22.52
## 295 1/17/2015 Quarter3 sweing Saturday 3 0.60 22.52
## 296 1/17/2015 Quarter3 sweing Saturday 11 0.60 14.89
## 297 1/17/2015 Quarter3 finishing Saturday 6 0.80 2.90
## 298 1/17/2015 Quarter3 sweing Saturday 5 0.70 41.19
## 299 1/17/2015 Quarter3 finishing Saturday 11 0.80 4.15
## 300 1/18/2015 Quarter3 finishing Sunday 5 0.60 4.15
## 301 1/18/2015 Quarter3 finishing Sunday 11 0.65 4.15
## 302 1/18/2015 Quarter3 finishing Sunday 6 0.80 2.90
## 303 1/18/2015 Quarter3 sweing Sunday 6 0.80 11.41
## 304 1/18/2015 Quarter3 sweing Sunday 7 0.80 48.84
## 305 1/18/2015 Quarter3 sweing Sunday 8 0.80 25.90
## 306 1/18/2015 Quarter3 sweing Sunday 9 0.80 26.16
## 307 1/18/2015 Quarter3 sweing Sunday 4 0.70 22.52
## 308 1/18/2015 Quarter3 sweing Sunday 10 0.70 22.52
## 309 1/18/2015 Quarter3 finishing Sunday 7 0.80 2.90
## 310 1/18/2015 Quarter3 sweing Sunday 12 0.80 26.87
## 311 1/18/2015 Quarter3 sweing Sunday 3 0.65 22.52
## 312 1/18/2015 Quarter3 sweing Sunday 11 0.65 14.89
## 313 1/18/2015 Quarter3 sweing Sunday 2 0.65 22.94
## 314 1/18/2015 Quarter3 finishing Sunday 8 0.80 2.90
## 315 1/18/2015 Quarter3 sweing Sunday 5 0.60 20.40
## 316 1/18/2015 Quarter3 finishing Sunday 9 0.80 3.94
## 317 1/18/2015 Quarter3 sweing Sunday 1 0.80 49.10
## 318 1/18/2015 Quarter3 finishing Sunday 10 0.70 3.94
## 319 1/19/2015 Quarter3 finishing Monday 4 0.70 4.30
## 320 1/19/2015 Quarter3 finishing Monday 9 0.80 3.94
## 321 1/19/2015 Quarter3 finishing Monday 5 0.65 4.15
## 322 1/19/2015 Quarter3 sweing Monday 6 0.80 11.41
## 323 1/19/2015 Quarter3 sweing Monday 8 0.80 25.90
## 324 1/19/2015 Quarter3 sweing Monday 9 0.80 26.16
## 325 1/19/2015 Quarter3 finishing Monday 12 0.80 2.90
## 326 1/19/2015 Quarter3 sweing Monday 2 0.70 22.94
## 327 1/19/2015 Quarter3 sweing Monday 4 0.70 22.52
## 328 1/19/2015 Quarter3 sweing Monday 3 0.70 22.52
## 329 1/19/2015 Quarter3 sweing Monday 10 0.70 22.52
## 330 1/19/2015 Quarter3 sweing Monday 11 0.70 14.89
## 331 1/19/2015 Quarter3 finishing Monday 8 0.80 2.90
## 332 1/19/2015 Quarter3 sweing Monday 5 0.65 20.40
## 333 1/19/2015 Quarter3 sweing Monday 7 0.80 48.84
## 334 1/19/2015 Quarter3 sweing Monday 1 0.50 22.94
## 335 1/19/2015 Quarter3 finishing Monday 10 0.70 3.94
## 336 1/19/2015 Quarter3 finishing Monday 11 0.70 4.15
## 337 1/19/2015 Quarter3 sweing Monday 12 0.35 15.26
## 338 1/20/2015 Quarter3 finishing Tuesday 5 0.70 4.15
## 339 1/20/2015 Quarter3 sweing Tuesday 6 0.80 11.41
## 340 1/20/2015 Quarter3 sweing Tuesday 8 0.80 25.90
## 341 1/20/2015 Quarter3 sweing Tuesday 9 0.80 26.16
## 342 1/20/2015 Quarter3 sweing Tuesday 4 0.70 22.52
## 343 1/20/2015 Quarter3 sweing Tuesday 10 0.70 22.52
## 344 1/20/2015 Quarter3 sweing Tuesday 3 0.70 22.52
## 345 1/20/2015 Quarter3 sweing Tuesday 2 0.70 22.94
## 346 1/20/2015 Quarter3 finishing Tuesday 9 0.80 3.94
## 347 1/20/2015 Quarter3 sweing Tuesday 11 0.70 14.89
## 348 1/20/2015 Quarter3 sweing Tuesday 5 0.70 20.40
## 349 1/20/2015 Quarter3 finishing Tuesday 8 0.80 2.90
## 350 1/20/2015 Quarter3 sweing Tuesday 12 0.50 15.26
## 351 1/20/2015 Quarter3 sweing Tuesday 7 0.35 22.94
## 352 1/20/2015 Quarter3 finishing Tuesday 11 0.70 4.15
## 353 1/21/2015 Quarter3 finishing Wednesday 4 0.75 4.30
## 354 1/21/2015 Quarter3 finishing Wednesday 2 0.70 3.94
## 355 1/21/2015 Quarter3 sweing Wednesday 4 0.75 22.52
## 356 1/21/2015 Quarter3 sweing Wednesday 6 0.80 11.61
## 357 1/21/2015 Quarter3 finishing Wednesday 9 0.80 3.94
## 358 1/21/2015 Quarter3 sweing Wednesday 8 0.80 25.90
## 359 1/21/2015 Quarter3 sweing Wednesday 2 0.70 22.94
## 360 1/21/2015 Quarter3 sweing Wednesday 10 0.70 22.52
## 361 1/21/2015 Quarter3 finishing Wednesday 5 0.70 4.15
## 362 1/21/2015 Quarter3 sweing Wednesday 5 0.70 20.40
## 363 1/21/2015 Quarter3 sweing Wednesday 3 0.70 22.52
## 364 1/21/2015 Quarter3 sweing Wednesday 11 0.70 14.89
## 365 1/21/2015 Quarter3 sweing Wednesday 1 0.65 22.94
## 366 1/21/2015 Quarter3 sweing Wednesday 12 0.60 15.26
## 367 1/21/2015 Quarter3 finishing Wednesday 8 0.80 2.90
## 368 1/21/2015 Quarter3 sweing Wednesday 9 0.80 54.56
## 369 1/21/2015 Quarter3 finishing Wednesday 1 0.65 3.94
## 370 1/21/2015 Quarter3 sweing Wednesday 7 0.50 22.52
## 371 1/21/2015 Quarter3 finishing Wednesday 11 0.70 4.15
## 372 1/22/2015 Quarter4 finishing Thursday 7 0.60 3.94
## 373 1/22/2015 Quarter4 finishing Thursday 10 0.75 3.94
## 374 1/22/2015 Quarter4 sweing Thursday 4 0.75 22.52
## 375 1/22/2015 Quarter4 sweing Thursday 2 0.70 22.94
## 376 1/22/2015 Quarter4 sweing Thursday 6 0.80 11.61
## 377 1/22/2015 Quarter4 sweing Thursday 10 0.75 22.52
## 378 1/22/2015 Quarter4 sweing Thursday 1 0.70 22.94
## 379 1/22/2015 Quarter4 sweing Thursday 3 0.70 22.52
## 380 1/22/2015 Quarter4 finishing Thursday 5 0.70 4.15
## 381 1/22/2015 Quarter4 sweing Thursday 5 0.70 20.40
## 382 1/22/2015 Quarter4 sweing Thursday 11 0.70 14.89
## 383 1/22/2015 Quarter4 finishing Thursday 4 0.75 4.30
## 384 1/22/2015 Quarter4 finishing Thursday 1 0.70 3.94
## 385 1/22/2015 Quarter4 finishing Thursday 2 0.70 3.94
## 386 1/22/2015 Quarter4 finishing Thursday 6 0.80 2.90
## 387 1/22/2015 Quarter4 sweing Thursday 12 0.60 15.26
## 388 1/22/2015 Quarter4 sweing Thursday 7 0.60 22.52
## 389 1/22/2015 Quarter4 sweing Thursday 8 0.80 40.99
## 390 1/22/2015 Quarter4 sweing Thursday 9 0.50 29.12
## 391 1/22/2015 Quarter4 finishing Thursday 3 0.70 3.94
## 392 1/22/2015 Quarter4 finishing Thursday 8 0.80 2.90
## 393 1/22/2015 Quarter4 finishing Thursday 12 0.60 4.08
## 394 1/24/2015 Quarter4 finishing Saturday 5 0.70 4.15
## 395 1/24/2015 Quarter4 finishing Saturday 10 0.75 3.94
## 396 1/24/2015 Quarter4 finishing Saturday 8 0.80 2.90
## 397 1/24/2015 Quarter4 sweing Saturday 2 0.75 22.94
## 398 1/24/2015 Quarter4 sweing Saturday 4 0.75 22.52
## 399 1/24/2015 Quarter4 finishing Saturday 11 0.75 4.15
## 400 1/24/2015 Quarter4 finishing Saturday 3 0.75 3.94
## 401 1/24/2015 Quarter4 finishing Saturday 7 0.65 3.94
## 402 1/24/2015 Quarter4 finishing Saturday 12 0.70 4.08
## 403 1/24/2015 Quarter4 sweing Saturday 1 0.70 22.94
## 404 1/24/2015 Quarter4 sweing Saturday 10 0.75 22.52
## 405 1/24/2015 Quarter4 sweing Saturday 6 0.80 11.61
## 406 1/24/2015 Quarter4 sweing Saturday 3 0.75 22.52
## 407 1/24/2015 Quarter4 sweing Saturday 12 0.75 15.26
## 408 1/24/2015 Quarter4 sweing Saturday 11 0.75 42.97
## 409 1/24/2015 Quarter4 sweing Saturday 5 0.70 20.40
## 410 1/24/2015 Quarter4 finishing Saturday 4 0.75 4.30
## 411 1/24/2015 Quarter4 sweing Saturday 7 0.65 22.52
## 412 1/24/2015 Quarter4 sweing Saturday 9 0.60 29.12
## 413 1/24/2015 Quarter4 finishing Saturday 2 0.75 3.94
## 414 1/24/2015 Quarter4 finishing Saturday 1 0.70 3.94
## 415 1/24/2015 Quarter4 sweing Saturday 8 0.35 15.09
## 416 1/24/2015 Quarter4 finishing Saturday 9 0.60 3.94
## 417 1/25/2015 Quarter4 finishing Sunday 5 0.70 4.15
## 418 1/25/2015 Quarter4 finishing Sunday 2 0.75 3.94
## 419 1/25/2015 Quarter4 finishing Sunday 1 0.70 3.94
## 420 1/25/2015 Quarter4 finishing Sunday 3 0.75 3.94
## 421 1/25/2015 Quarter4 finishing Sunday 10 0.75 3.94
## 422 1/25/2015 Quarter4 finishing Sunday 4 0.75 4.30
## 423 1/25/2015 Quarter4 sweing Sunday 4 0.75 22.52
## 424 1/25/2015 Quarter4 sweing Sunday 2 0.75 22.94
## 425 1/25/2015 Quarter4 sweing Sunday 1 0.70 22.94
## 426 1/25/2015 Quarter4 sweing Sunday 3 0.75 22.52
## 427 1/25/2015 Quarter4 sweing Sunday 6 0.80 11.61
## 428 1/25/2015 Quarter4 sweing Sunday 10 0.75 22.52
## 429 1/25/2015 Quarter4 finishing Sunday 7 0.65 3.94
## 430 1/25/2015 Quarter4 sweing Sunday 7 0.70 22.52
## 431 1/25/2015 Quarter4 sweing Sunday 12 0.70 15.26
## 432 1/25/2015 Quarter4 sweing Sunday 5 0.70 20.40
## 433 1/25/2015 Quarter4 sweing Sunday 9 0.65 29.12
## 434 1/25/2015 Quarter4 finishing Sunday 12 0.70 4.08
## 435 1/25/2015 Quarter4 sweing Sunday 11 0.75 42.97
## 436 1/25/2015 Quarter4 sweing Sunday 8 0.50 15.09
## 437 1/25/2015 Quarter4 finishing Sunday 8 0.80 2.90
## 438 1/26/2015 Quarter4 finishing Monday 3 0.75 3.94
## 439 1/26/2015 Quarter4 finishing Monday 10 0.75 3.94
## 440 1/26/2015 Quarter4 finishing Monday 4 0.75 4.30
## 441 1/26/2015 Quarter4 finishing Monday 5 0.70 4.15
## 442 1/26/2015 Quarter4 finishing Monday 2 0.75 3.94
## 443 1/26/2015 Quarter4 finishing Monday 1 0.70 3.94
## 444 1/26/2015 Quarter4 sweing Monday 4 0.80 22.52
## 445 1/26/2015 Quarter4 sweing Monday 6 0.80 11.61
## 446 1/26/2015 Quarter4 sweing Monday 3 0.75 22.52
## 447 1/26/2015 Quarter4 sweing Monday 2 0.75 22.94
## 448 1/26/2015 Quarter4 sweing Monday 1 0.70 22.94
## 449 1/26/2015 Quarter4 sweing Monday 10 0.75 22.52
## 450 1/26/2015 Quarter4 finishing Monday 12 0.70 4.08
## 451 1/26/2015 Quarter4 sweing Monday 5 0.75 20.40
## 452 1/26/2015 Quarter4 sweing Monday 9 0.70 29.12
## 453 1/26/2015 Quarter4 sweing Monday 12 0.70 15.26
## 454 1/26/2015 Quarter4 finishing Monday 7 0.65 3.94
## 455 1/26/2015 Quarter4 sweing Monday 8 0.60 15.09
## 456 1/26/2015 Quarter4 sweing Monday 11 0.35 28.08
## 457 1/27/2015 Quarter4 sweing Tuesday 2 0.75 22.52
## 458 1/27/2015 Quarter4 sweing Tuesday 3 0.75 22.52
## 459 1/27/2015 Quarter4 finishing Tuesday 10 0.80 3.94
## 460 1/27/2015 Quarter4 finishing Tuesday 4 0.80 4.30
## 461 1/27/2015 Quarter4 finishing Tuesday 5 0.50 4.15
## 462 1/27/2015 Quarter4 sweing Tuesday 10 0.80 22.52
## 463 1/27/2015 Quarter4 finishing Tuesday 3 0.75 3.94
## 464 1/27/2015 Quarter4 sweing Tuesday 4 0.80 22.52
## 465 1/27/2015 Quarter4 finishing Tuesday 8 0.65 3.94
## 466 1/27/2015 Quarter4 finishing Tuesday 12 0.70 4.15
## 467 1/27/2015 Quarter4 finishing Tuesday 7 0.50 4.15
## 468 1/27/2015 Quarter4 sweing Tuesday 1 0.75 22.94
## 469 1/27/2015 Quarter4 finishing Tuesday 2 0.75 3.94
## 470 1/27/2015 Quarter4 finishing Tuesday 1 0.75 3.94
## 471 1/27/2015 Quarter4 sweing Tuesday 9 0.70 29.12
## 472 1/27/2015 Quarter4 sweing Tuesday 12 0.70 15.26
## 473 1/27/2015 Quarter4 sweing Tuesday 8 0.65 15.09
## 474 1/27/2015 Quarter4 sweing Tuesday 6 0.80 30.40
## 475 1/27/2015 Quarter4 finishing Tuesday 6 0.80 2.90
## 476 1/27/2015 Quarter4 sweing Tuesday 5 0.50 20.79
## 477 1/27/2015 Quarter4 sweing Tuesday 11 0.50 48.18
## 478 1/28/2015 Quarter4 sweing Wednesday 2 0.80 22.52
## 479 1/28/2015 Quarter4 sweing Wednesday 3 0.80 22.52
## 480 1/28/2015 Quarter4 finishing Wednesday 6 0.35 2.90
## 481 1/28/2015 Quarter4 finishing Wednesday 1 0.75 3.94
## 482 1/28/2015 Quarter4 finishing Wednesday 2 0.80 3.94
## 483 1/28/2015 Quarter4 sweing Wednesday 10 0.80 22.52
## 484 1/28/2015 Quarter4 sweing Wednesday 1 0.75 22.94
## 485 1/28/2015 Quarter4 finishing Wednesday 10 0.80 3.94
## 486 1/28/2015 Quarter4 sweing Wednesday 5 0.60 20.79
## 487 1/28/2015 Quarter4 sweing Wednesday 4 0.80 22.52
## 488 1/28/2015 Quarter4 finishing Wednesday 12 0.75 4.08
## 489 1/28/2015 Quarter4 sweing Wednesday 9 0.70 29.12
## 490 1/28/2015 Quarter4 sweing Wednesday 12 0.75 15.26
## 491 1/28/2015 Quarter4 finishing Wednesday 4 0.80 4.30
## 492 1/28/2015 Quarter4 finishing Wednesday 8 0.65 4.15
## 493 1/28/2015 Quarter4 sweing Wednesday 11 0.50 20.10
## 494 1/28/2015 Quarter4 sweing Wednesday 8 0.70 38.09
## 495 1/28/2015 Quarter4 sweing Wednesday 6 0.35 18.79
## 496 1/28/2015 Quarter4 finishing Wednesday 7 0.60 3.94
## 497 1/28/2015 Quarter4 sweing Wednesday 7 0.60 23.54
## 498 1/28/2015 Quarter4 finishing Wednesday 11 0.50 2.90
## 499 1/29/2015 Quarter5 sweing Thursday 2 0.80 22.52
## 500 1/29/2015 Quarter5 finishing Thursday 4 0.80 4.30
## 501 1/29/2015 Quarter5 sweing Thursday 3 0.80 22.52
## 502 1/29/2015 Quarter5 sweing Thursday 4 0.80 22.52
## 503 1/29/2015 Quarter5 sweing Thursday 10 0.80 22.52
## 504 1/29/2015 Quarter5 finishing Thursday 6 0.50 2.90
## 505 1/29/2015 Quarter5 finishing Thursday 8 0.65 4.15
## 506 1/29/2015 Quarter5 finishing Thursday 11 0.60 2.90
## 507 1/29/2015 Quarter5 finishing Thursday 10 0.80 3.94
## 508 1/29/2015 Quarter5 finishing Thursday 1 0.75 3.94
## 509 1/29/2015 Quarter5 sweing Thursday 1 0.75 22.94
## 510 1/29/2015 Quarter5 sweing Thursday 9 0.70 29.12
## 511 1/29/2015 Quarter5 sweing Thursday 5 0.65 20.79
## 512 1/29/2015 Quarter5 finishing Thursday 2 0.80 3.94
## 513 1/29/2015 Quarter5 sweing Thursday 12 0.75 15.26
## 514 1/29/2015 Quarter5 finishing Thursday 12 0.75 4.08
## 515 1/29/2015 Quarter5 sweing Thursday 11 0.60 20.10
## 516 1/29/2015 Quarter5 sweing Thursday 6 0.50 18.79
## 517 1/29/2015 Quarter5 finishing Thursday 3 0.80 3.94
## 518 1/29/2015 Quarter5 sweing Thursday 7 0.65 23.54
## 519 1/31/2015 Quarter5 sweing Saturday 3 0.80 22.52
## 520 1/31/2015 Quarter5 sweing Saturday 2 0.80 22.52
## 521 1/31/2015 Quarter5 finishing Saturday 2 0.80 3.94
## 522 1/31/2015 Quarter5 finishing Saturday 3 0.80 3.94
## 523 1/31/2015 Quarter5 finishing Saturday 4 0.80 3.94
## 524 1/31/2015 Quarter5 finishing Saturday 10 0.80 3.94
## 525 1/31/2015 Quarter5 finishing Saturday 1 0.75 3.94
## 526 1/31/2015 Quarter5 finishing Saturday 9 0.75 3.94
## 527 1/31/2015 Quarter5 finishing Saturday 12 0.75 4.08
## 528 1/31/2015 Quarter5 finishing Saturday 5 0.70 3.94
## 529 1/31/2015 Quarter5 finishing Saturday 7 0.70 3.94
## 530 1/31/2015 Quarter5 finishing Saturday 8 0.65 3.94
## 531 1/31/2015 Quarter5 finishing Saturday 11 0.65 3.94
## 532 1/31/2015 Quarter5 finishing Saturday 6 0.60 3.94
## 533 1/31/2015 Quarter5 sweing Saturday 10 0.80 22.52
## 534 1/31/2015 Quarter5 sweing Saturday 4 0.80 22.52
## 535 1/31/2015 Quarter5 sweing Saturday 9 0.75 29.12
## 536 1/31/2015 Quarter5 sweing Saturday 1 0.75 22.94
## 537 1/31/2015 Quarter5 sweing Saturday 12 0.75 15.26
## 538 1/31/2015 Quarter5 sweing Saturday 5 0.70 50.89
## 539 1/31/2015 Quarter5 sweing Saturday 11 0.65 20.10
## 540 1/31/2015 Quarter5 sweing Saturday 6 0.60 18.79
## 541 1/31/2015 Quarter5 sweing Saturday 7 0.70 23.54
## 542 1/31/2015 Quarter5 sweing Saturday 8 0.50 23.54
## 543 2/1/2015 Quarter1 finishing Sunday 8 0.65 4.15
## 544 2/1/2015 Quarter1 sweing Sunday 2 0.80 22.52
## 545 2/1/2015 Quarter1 sweing Sunday 1 0.80 22.94
## 546 2/1/2015 Quarter1 finishing Sunday 1 0.75 3.94
## 547 2/1/2015 Quarter1 sweing Sunday 3 0.80 22.52
## 548 2/1/2015 Quarter1 finishing Sunday 2 0.80 3.94
## 549 2/1/2015 Quarter1 finishing Sunday 7 0.70 3.94
## 550 2/1/2015 Quarter1 finishing Sunday 10 0.80 3.94
## 551 2/1/2015 Quarter1 sweing Sunday 10 0.80 22.52
## 552 2/1/2015 Quarter1 sweing Sunday 4 0.80 22.52
## 553 2/1/2015 Quarter1 finishing Sunday 4 0.80 4.30
## 554 2/1/2015 Quarter1 sweing Sunday 9 0.75 29.12
## 555 2/1/2015 Quarter1 sweing Sunday 12 0.75 15.26
## 556 2/1/2015 Quarter1 finishing Sunday 12 0.75 4.08
## 557 2/1/2015 Quarter1 sweing Sunday 11 0.70 20.10
## 558 2/1/2015 Quarter1 sweing Sunday 6 0.65 18.79
## 559 2/1/2015 Quarter1 sweing Sunday 8 0.60 24.26
## 560 2/1/2015 Quarter1 sweing Sunday 7 0.70 24.26
## 561 2/1/2015 Quarter1 finishing Sunday 6 0.60 2.90
## 562 2/2/2015 Quarter1 sweing Monday 1 0.80 22.94
## 563 2/2/2015 Quarter1 finishing Monday 9 0.75 3.94
## 564 2/2/2015 Quarter1 sweing Monday 2 0.80 22.52
## 565 2/2/2015 Quarter1 sweing Monday 3 0.80 22.52
## 566 2/2/2015 Quarter1 sweing Monday 10 0.80 22.52
## 567 2/2/2015 Quarter1 finishing Monday 10 0.80 3.94
## 568 2/2/2015 Quarter1 finishing Monday 4 0.80 4.30
## 569 2/2/2015 Quarter1 sweing Monday 12 0.80 15.26
## 570 2/2/2015 Quarter1 sweing Monday 4 0.80 22.52
## 571 2/2/2015 Quarter1 sweing Monday 9 0.75 29.12
## 572 2/2/2015 Quarter1 finishing Monday 12 0.75 4.08
## 573 2/2/2015 Quarter1 sweing Monday 11 0.70 20.55
## 574 2/2/2015 Quarter1 sweing Monday 6 0.70 18.79
## 575 2/2/2015 Quarter1 finishing Monday 8 0.65 4.15
## 576 2/2/2015 Quarter1 finishing Monday 1 0.75 3.94
## 577 2/2/2015 Quarter1 sweing Monday 5 0.50 30.10
## 578 2/2/2015 Quarter1 sweing Monday 7 0.70 24.26
## 579 2/2/2015 Quarter1 finishing Monday 6 0.60 2.90
## 580 2/2/2015 Quarter1 sweing Monday 8 0.65 24.26
## 581 2/3/2015 Quarter1 finishing Tuesday 2 0.80 3.94
## 582 2/3/2015 Quarter1 sweing Tuesday 1 0.80 22.52
## 583 2/3/2015 Quarter1 sweing Tuesday 10 0.80 22.52
## 584 2/3/2015 Quarter1 finishing Tuesday 1 0.80 3.94
## 585 2/3/2015 Quarter1 finishing Tuesday 8 0.70 4.15
## 586 2/3/2015 Quarter1 sweing Tuesday 3 0.80 22.52
## 587 2/3/2015 Quarter1 sweing Tuesday 2 0.80 22.52
## 588 2/3/2015 Quarter1 finishing Tuesday 9 0.75 3.94
## 589 2/3/2015 Quarter1 sweing Tuesday 4 0.80 22.52
## 590 2/3/2015 Quarter1 sweing Tuesday 12 0.80 15.26
## 591 2/3/2015 Quarter1 finishing Tuesday 12 0.80 4.08
## 592 2/3/2015 Quarter1 sweing Tuesday 9 0.75 29.12
## 593 2/3/2015 Quarter1 sweing Tuesday 11 0.70 25.31
## 594 2/3/2015 Quarter1 sweing Tuesday 6 0.70 18.79
## 595 2/3/2015 Quarter1 sweing Tuesday 8 0.70 24.26
## 596 2/3/2015 Quarter1 sweing Tuesday 7 0.70 24.26
## 597 2/3/2015 Quarter1 finishing Tuesday 4 0.80 4.30
## 598 2/3/2015 Quarter1 finishing Tuesday 6 0.70 2.90
## 599 2/3/2015 Quarter1 sweing Tuesday 5 0.60 30.10
## 600 2/4/2015 Quarter1 sweing Wednesday 2 0.80 22.52
## 601 2/4/2015 Quarter1 sweing Wednesday 3 0.80 22.52
## 602 2/4/2015 Quarter1 sweing Wednesday 10 0.80 22.52
## 603 2/4/2015 Quarter1 finishing Wednesday 2 0.80 3.94
## 604 2/4/2015 Quarter1 finishing Wednesday 1 0.80 3.94
## 605 2/4/2015 Quarter1 finishing Wednesday 8 0.70 4.15
## 606 2/4/2015 Quarter1 sweing Wednesday 1 0.80 22.52
## 607 2/4/2015 Quarter1 sweing Wednesday 12 0.80 15.26
## 608 2/4/2015 Quarter1 sweing Wednesday 9 0.80 22.52
## 609 2/4/2015 Quarter1 finishing Wednesday 7 0.70 3.94
## 610 2/4/2015 Quarter1 finishing Wednesday 9 0.75 3.94
## 611 2/4/2015 Quarter1 sweing Wednesday 6 0.70 18.79
## 612 2/4/2015 Quarter1 sweing Wednesday 7 0.70 24.26
## 613 2/4/2015 Quarter1 sweing Wednesday 11 0.70 10.05
## 614 2/4/2015 Quarter1 sweing Wednesday 8 0.70 29.12
## 615 2/4/2015 Quarter1 finishing Wednesday 12 0.80 4.08
## 616 2/4/2015 Quarter1 sweing Wednesday 5 0.65 30.10
## 617 2/4/2015 Quarter1 finishing Wednesday 6 0.70 2.90
## 618 2/4/2015 Quarter1 sweing Wednesday 4 0.35 30.10
## 619 2/5/2015 Quarter1 sweing Thursday 2 0.80 22.52
## 620 2/5/2015 Quarter1 sweing Thursday 1 0.80 22.52
## 621 2/5/2015 Quarter1 sweing Thursday 10 0.80 22.52
## 622 2/5/2015 Quarter1 finishing Thursday 2 0.80 3.94
## 623 2/5/2015 Quarter1 sweing Thursday 3 0.80 22.52
## 624 2/5/2015 Quarter1 finishing Thursday 6 0.70 2.90
## 625 2/5/2015 Quarter1 finishing Thursday 12 0.80 4.08
## 626 2/5/2015 Quarter1 finishing Thursday 7 0.70 3.94
## 627 2/5/2015 Quarter1 finishing Thursday 1 0.80 3.94
## 628 2/5/2015 Quarter1 sweing Thursday 12 0.80 15.26
## 629 2/5/2015 Quarter1 sweing Thursday 9 0.80 29.12
## 630 2/5/2015 Quarter1 finishing Thursday 10 0.80 3.94
## 631 2/5/2015 Quarter1 sweing Thursday 11 0.75 10.05
## 632 2/5/2015 Quarter1 sweing Thursday 6 0.70 18.79
## 633 2/5/2015 Quarter1 sweing Thursday 5 0.70 30.10
## 634 2/5/2015 Quarter1 sweing Thursday 7 0.07 24.26
## 635 2/5/2015 Quarter1 sweing Thursday 4 0.50 30.10
## 636 2/5/2015 Quarter1 sweing Thursday 8 0.70 24.26
## 637 2/7/2015 Quarter1 finishing Saturday 2 0.80 3.94
## 638 2/7/2015 Quarter1 sweing Saturday 2 0.80 22.52
## 639 2/7/2015 Quarter1 sweing Saturday 3 0.80 22.52
## 640 2/7/2015 Quarter1 sweing Saturday 1 0.80 22.52
## 641 2/7/2015 Quarter1 sweing Saturday 10 0.80 22.52
## 642 2/7/2015 Quarter1 finishing Saturday 12 0.80 4.08
## 643 2/7/2015 Quarter1 finishing Saturday 1 0.80 3.94
## 644 2/7/2015 Quarter1 finishing Saturday 6 0.75 2.90
## 645 2/7/2015 Quarter1 sweing Saturday 12 0.80 15.26
## 646 2/7/2015 Quarter1 sweing Saturday 9 0.80 29.12
## 647 2/7/2015 Quarter1 finishing Saturday 9 0.80 3.94
## 648 2/7/2015 Quarter1 sweing Saturday 6 0.75 18.79
## 649 2/7/2015 Quarter1 sweing Saturday 11 0.75 10.05
## 650 2/7/2015 Quarter1 finishing Saturday 7 0.70 3.94
## 651 2/7/2015 Quarter1 sweing Saturday 7 0.70 24.26
## 652 2/7/2015 Quarter1 sweing Saturday 4 0.60 30.10
## 653 2/7/2015 Quarter1 sweing Saturday 5 0.70 30.10
## 654 2/7/2015 Quarter1 finishing Saturday 4 0.80 4.30
## 655 2/7/2015 Quarter1 sweing Saturday 8 0.70 24.26
## 656 2/8/2015 Quarter2 sweing Sunday 2 0.80 22.52
## 657 2/8/2015 Quarter2 finishing Sunday 7 0.70 4.15
## 658 2/8/2015 Quarter2 sweing Sunday 10 0.80 22.52
## 659 2/8/2015 Quarter2 sweing Sunday 1 0.80 22.52
## 660 2/8/2015 Quarter2 sweing Sunday 3 0.80 22.52
## 661 2/8/2015 Quarter2 finishing Sunday 1 0.80 3.94
## 662 2/8/2015 Quarter2 finishing Sunday 12 0.80 4.08
## 663 2/8/2015 Quarter2 finishing Sunday 2 0.80 3.94
## 664 2/8/2015 Quarter2 finishing Sunday 8 0.70 4.15
## 665 2/8/2015 Quarter2 sweing Sunday 12 0.80 15.26
## 666 2/8/2015 Quarter2 sweing Sunday 9 0.80 29.12
## 667 2/8/2015 Quarter2 sweing Sunday 6 0.75 18.79
## 668 2/8/2015 Quarter2 sweing Sunday 11 0.75 10.05
## 669 2/8/2015 Quarter2 sweing Sunday 5 0.70 30.10
## 670 2/8/2015 Quarter2 finishing Sunday 6 0.75 2.90
## 671 2/8/2015 Quarter2 finishing Sunday 9 0.80 3.94
## 672 2/8/2015 Quarter2 sweing Sunday 4 0.65 30.10
## 673 2/8/2015 Quarter2 sweing Sunday 7 0.70 24.26
## 674 2/8/2015 Quarter2 sweing Sunday 8 0.70 24.26
## 675 2/9/2015 Quarter2 finishing Monday 2 0.80 3.94
## 676 2/9/2015 Quarter2 finishing Monday 1 0.80 3.94
## 677 2/9/2015 Quarter2 sweing Monday 10 0.80 22.52
## 678 2/9/2015 Quarter2 sweing Monday 1 0.80 22.52
## 679 2/9/2015 Quarter2 sweing Monday 2 0.80 22.52
## 680 2/9/2015 Quarter2 finishing Monday 6 0.75 2.90
## 681 2/9/2015 Quarter2 sweing Monday 12 0.80 15.26
## 682 2/9/2015 Quarter2 sweing Monday 3 0.80 22.52
## 683 2/9/2015 Quarter2 sweing Monday 9 0.80 29.12
## 684 2/9/2015 Quarter2 sweing Monday 4 0.70 30.10
## 685 2/9/2015 Quarter2 sweing Monday 11 0.75 10.05
## 686 2/9/2015 Quarter2 finishing Monday 8 0.35 4.15
## 687 2/9/2015 Quarter2 sweing Monday 5 0.70 30.10
## 688 2/9/2015 Quarter2 finishing Monday 9 0.80 3.94
## 689 2/9/2015 Quarter2 sweing Monday 6 0.75 18.79
## 690 2/9/2015 Quarter2 sweing Monday 7 0.35 30.10
## 691 2/9/2015 Quarter2 sweing Monday 8 0.35 30.10
## 692 2/9/2015 Quarter2 finishing Monday 12 0.80 4.08
## 693 2/10/2015 Quarter2 finishing Tuesday 12 0.80 4.08
## 694 2/10/2015 Quarter2 finishing Tuesday 2 0.80 3.94
## 695 2/10/2015 Quarter2 sweing Tuesday 10 0.80 22.52
## 696 2/10/2015 Quarter2 sweing Tuesday 1 0.80 22.52
## 697 2/10/2015 Quarter2 sweing Tuesday 3 0.80 22.52
## 698 2/10/2015 Quarter2 sweing Tuesday 2 0.80 22.52
## 699 2/10/2015 Quarter2 finishing Tuesday 1 0.80 3.94
## 700 2/10/2015 Quarter2 sweing Tuesday 9 0.80 29.12
## 701 2/10/2015 Quarter2 sweing Tuesday 12 0.80 15.26
## 702 2/10/2015 Quarter2 finishing Tuesday 4 0.70 4.15
## 703 2/10/2015 Quarter2 sweing Tuesday 6 0.75 18.79
## 704 2/10/2015 Quarter2 sweing Tuesday 11 0.80 10.05
## 705 2/10/2015 Quarter2 sweing Tuesday 5 0.75 30.10
## 706 2/10/2015 Quarter2 finishing Tuesday 8 0.35 4.15
## 707 2/10/2015 Quarter2 sweing Tuesday 4 0.70 30.10
## 708 2/10/2015 Quarter2 finishing Tuesday 9 0.80 3.94
## 709 2/10/2015 Quarter2 finishing Tuesday 6 0.75 2.90
## 710 2/10/2015 Quarter2 sweing Tuesday 7 0.50 30.10
## 711 2/10/2015 Quarter2 sweing Tuesday 8 0.50 30.10
## 712 2/11/2015 Quarter2 finishing Wednesday 4 0.70 4.15
## 713 2/11/2015 Quarter2 finishing Wednesday 12 0.80 4.08
## 714 2/11/2015 Quarter2 sweing Wednesday 2 0.80 22.52
## 715 2/11/2015 Quarter2 sweing Wednesday 1 0.80 22.52
## 716 2/11/2015 Quarter2 finishing Wednesday 8 0.35 4.15
## 717 2/11/2015 Quarter2 finishing Wednesday 2 0.80 3.94
## 718 2/11/2015 Quarter2 finishing Wednesday 5 0.70 4.15
## 719 2/11/2015 Quarter2 sweing Wednesday 10 0.80 22.52
## 720 2/11/2015 Quarter2 sweing Wednesday 6 0.80 18.79
## 721 2/11/2015 Quarter2 sweing Wednesday 12 0.80 15.26
## 722 2/11/2015 Quarter2 sweing Wednesday 9 0.80 29.12
## 723 2/11/2015 Quarter2 sweing Wednesday 5 0.75 30.10
## 724 2/11/2015 Quarter2 sweing Wednesday 8 0.60 30.10
## 725 2/11/2015 Quarter2 sweing Wednesday 4 0.70 30.10
## 726 2/11/2015 Quarter2 finishing Wednesday 1 0.80 3.94
## 727 2/11/2015 Quarter2 sweing Wednesday 7 0.60 30.10
## 728 2/11/2015 Quarter2 finishing Wednesday 9 0.80 3.94
## 729 2/11/2015 Quarter2 sweing Wednesday 3 0.80 22.52
## 730 2/11/2015 Quarter2 sweing Wednesday 11 0.35 11.41
## 731 2/12/2015 Quarter2 sweing Thursday 1 0.80 22.52
## 732 2/12/2015 Quarter2 finishing Thursday 4 0.70 4.15
## 733 2/12/2015 Quarter2 sweing Thursday 2 0.80 22.52
## 734 2/12/2015 Quarter2 finishing Thursday 12 0.80 4.08
## 735 2/12/2015 Quarter2 sweing Thursday 12 0.80 15.26
## 736 2/12/2015 Quarter2 finishing Thursday 8 0.35 4.15
## 737 2/12/2015 Quarter2 sweing Thursday 5 0.75 30.10
## 738 2/12/2015 Quarter2 sweing Thursday 6 0.80 18.79
## 739 2/12/2015 Quarter2 finishing Thursday 1 0.80 3.94
## 740 2/12/2015 Quarter2 finishing Thursday 9 0.80 3.94
## 741 2/12/2015 Quarter2 sweing Thursday 4 0.70 30.10
## 742 2/12/2015 Quarter2 finishing Thursday 2 0.80 3.94
## 743 2/12/2015 Quarter2 finishing Thursday 5 0.70 4.15
## 744 2/12/2015 Quarter2 sweing Thursday 7 0.65 30.10
## 745 2/12/2015 Quarter2 sweing Thursday 11 0.50 11.41
## 746 2/12/2015 Quarter2 sweing Thursday 9 0.80 29.12
## 747 2/12/2015 Quarter2 sweing Thursday 8 0.65 30.10
## 748 2/12/2015 Quarter2 sweing Thursday 10 0.80 22.52
## 749 2/12/2015 Quarter2 sweing Thursday 3 0.35 30.10
## 750 2/14/2015 Quarter2 sweing Saturday 1 0.80 22.52
## 751 2/14/2015 Quarter2 finishing Saturday 7 0.70 4.15
## 752 2/14/2015 Quarter2 finishing Saturday 4 0.75 4.15
## 753 2/14/2015 Quarter2 finishing Saturday 12 0.80 4.08
## 754 2/14/2015 Quarter2 sweing Saturday 12 0.80 15.26
## 755 2/14/2015 Quarter2 sweing Saturday 2 0.80 22.52
## 756 2/14/2015 Quarter2 finishing Saturday 1 0.80 3.94
## 757 2/14/2015 Quarter2 sweing Saturday 4 0.75 30.10
## 758 2/14/2015 Quarter2 sweing Saturday 5 0.75 30.10
## 759 2/14/2015 Quarter2 finishing Saturday 8 0.70 4.15
## 760 2/14/2015 Quarter2 sweing Saturday 8 0.70 30.10
## 761 2/14/2015 Quarter2 sweing Saturday 7 0.70 30.10
## 762 2/14/2015 Quarter2 sweing Saturday 11 0.60 11.41
## 763 2/14/2015 Quarter2 sweing Saturday 6 0.80 18.79
## 764 2/14/2015 Quarter2 sweing Saturday 3 0.50 30.10
## 765 2/14/2015 Quarter2 finishing Saturday 6 0.80 2.90
## 766 2/14/2015 Quarter2 finishing Saturday 9 0.80 3.94
## 767 2/15/2015 Quarter3 finishing Sunday 1 0.80 3.94
## 768 2/15/2015 Quarter3 finishing Sunday 2 0.80 3.94
## 769 2/15/2015 Quarter3 sweing Sunday 1 0.80 22.52
## 770 2/15/2015 Quarter3 finishing Sunday 12 0.80 4.08
## 771 2/15/2015 Quarter3 sweing Sunday 12 0.80 15.26
## 772 2/15/2015 Quarter3 finishing Sunday 5 0.75 4.15
## 773 2/15/2015 Quarter3 sweing Sunday 5 0.80 30.10
## 774 2/15/2015 Quarter3 finishing Sunday 11 0.60 2.90
## 775 2/15/2015 Quarter3 sweing Sunday 7 0.70 30.10
## 776 2/15/2015 Quarter3 sweing Sunday 8 0.70 30.10
## 777 2/15/2015 Quarter3 sweing Sunday 6 0.75 18.79
## 778 2/15/2015 Quarter3 sweing Sunday 11 0.65 11.41
## 779 2/15/2015 Quarter3 finishing Sunday 8 0.70 4.15
## 780 2/15/2015 Quarter3 finishing Sunday 6 0.80 2.90
## 781 2/15/2015 Quarter3 sweing Sunday 4 0.75 30.10
## 782 2/15/2015 Quarter3 sweing Sunday 3 0.60 30.10
## 783 2/15/2015 Quarter3 sweing Sunday 2 0.80 22.52
## 784 2/15/2015 Quarter3 finishing Sunday 4 0.75 4.15
## 785 2/15/2015 Quarter3 sweing Sunday 9 0.50 18.79
## 786 2/16/2015 Quarter3 sweing Monday 1 0.80 22.52
## 787 2/16/2015 Quarter3 finishing Monday 9 0.80 3.94
## 788 2/16/2015 Quarter3 finishing Monday 12 0.80 4.08
## 789 2/16/2015 Quarter3 finishing Monday 3 0.50 4.15
## 790 2/16/2015 Quarter3 sweing Monday 3 0.65 30.10
## 791 2/16/2015 Quarter3 sweing Monday 5 0.80 30.10
## 792 2/16/2015 Quarter3 sweing Monday 12 0.80 15.26
## 793 2/16/2015 Quarter3 finishing Monday 6 0.80 2.90
## 794 2/16/2015 Quarter3 sweing Monday 6 0.75 18.79
## 795 2/16/2015 Quarter3 sweing Monday 4 0.75 30.10
## 796 2/16/2015 Quarter3 finishing Monday 4 0.75 4.15
## 797 2/16/2015 Quarter3 sweing Monday 7 0.70 30.10
## 798 2/16/2015 Quarter3 finishing Monday 5 0.75 4.15
## 799 2/16/2015 Quarter3 sweing Monday 8 0.70 30.10
## 800 2/16/2015 Quarter3 sweing Monday 11 0.70 11.41
## 801 2/16/2015 Quarter3 sweing Monday 10 0.60 18.22
## 802 2/16/2015 Quarter3 sweing Monday 9 0.60 18.79
## 803 2/16/2015 Quarter3 finishing Monday 7 0.70 4.15
## 804 2/17/2015 Quarter3 sweing Tuesday 1 0.80 22.52
## 805 2/17/2015 Quarter3 finishing Tuesday 10 0.80 3.94
## 806 2/17/2015 Quarter3 finishing Tuesday 7 0.70 5.13
## 807 2/17/2015 Quarter3 finishing Tuesday 12 0.80 5.13
## 808 2/17/2015 Quarter3 sweing Tuesday 12 0.80 15.26
## 809 2/17/2015 Quarter3 finishing Tuesday 3 0.50 5.13
## 810 2/17/2015 Quarter3 sweing Tuesday 6 0.75 18.79
## 811 2/17/2015 Quarter3 sweing Tuesday 4 0.75 30.10
## 812 2/17/2015 Quarter3 finishing Tuesday 6 0.80 2.90
## 813 2/17/2015 Quarter3 sweing Tuesday 7 0.70 30.10
## 814 2/17/2015 Quarter3 sweing Tuesday 11 0.70 11.41
## 815 2/17/2015 Quarter3 sweing Tuesday 3 0.70 30.10
## 816 2/17/2015 Quarter3 finishing Tuesday 4 0.75 5.13
## 817 2/17/2015 Quarter3 sweing Tuesday 5 0.80 30.10
## 818 2/17/2015 Quarter3 sweing Tuesday 9 0.65 18.79
## 819 2/17/2015 Quarter3 sweing Tuesday 8 0.60 29.40
## 820 2/17/2015 Quarter3 finishing Tuesday 9 0.80 3.94
## 821 2/17/2015 Quarter3 finishing Tuesday 2 0.80 5.13
## 822 2/17/2015 Quarter3 sweing Tuesday 2 0.50 30.33
## 823 2/17/2015 Quarter3 sweing Tuesday 10 0.65 18.22
## 824 2/18/2015 Quarter3 finishing Wednesday 12 0.80 5.13
## 825 2/18/2015 Quarter3 finishing Wednesday 6 0.80 2.90
## 826 2/18/2015 Quarter3 finishing Wednesday 2 0.80 5.13
## 827 2/18/2015 Quarter3 sweing Wednesday 11 0.70 11.41
## 828 2/18/2015 Quarter3 sweing Wednesday 4 0.80 30.10
## 829 2/18/2015 Quarter3 sweing Wednesday 5 0.80 30.10
## 830 2/18/2015 Quarter3 sweing Wednesday 12 0.80 15.26
## 831 2/18/2015 Quarter3 sweing Wednesday 1 0.80 22.52
## 832 2/18/2015 Quarter3 sweing Wednesday 6 0.75 18.79
## 833 2/18/2015 Quarter3 sweing Wednesday 7 0.75 30.10
## 834 2/18/2015 Quarter3 finishing Wednesday 4 0.75 5.13
## 835 2/18/2015 Quarter3 sweing Wednesday 3 0.70 30.10
## 836 2/18/2015 Quarter3 sweing Wednesday 9 0.70 18.79
## 837 2/18/2015 Quarter3 finishing Wednesday 7 0.70 5.13
## 838 2/18/2015 Quarter3 finishing Wednesday 10 0.80 3.94
## 839 2/18/2015 Quarter3 finishing Wednesday 8 0.70 5.13
## 840 2/18/2015 Quarter3 finishing Wednesday 9 0.80 3.94
## 841 2/18/2015 Quarter3 sweing Wednesday 2 0.60 30.33
## 842 2/18/2015 Quarter3 sweing Wednesday 10 0.70 19.68
## 843 2/18/2015 Quarter3 finishing Wednesday 3 0.50 5.13
## 844 2/18/2015 Quarter3 sweing Wednesday 8 0.65 29.40
## 845 2/19/2015 Quarter3 finishing Thursday 3 0.50 5.13
## 846 2/19/2015 Quarter3 sweing Thursday 12 0.80 15.26
## 847 2/19/2015 Quarter3 sweing Thursday 1 0.80 22.52
## 848 2/19/2015 Quarter3 sweing Thursday 4 0.80 30.10
## 849 2/19/2015 Quarter3 sweing Thursday 5 0.80 30.10
## 850 2/19/2015 Quarter3 finishing Thursday 6 0.80 2.90
## 851 2/19/2015 Quarter3 sweing Thursday 6 0.75 18.79
## 852 2/19/2015 Quarter3 finishing Thursday 10 0.80 3.94
## 853 2/19/2015 Quarter3 finishing Thursday 2 0.80 5.13
## 854 2/19/2015 Quarter3 sweing Thursday 3 0.70 30.10
## 855 2/19/2015 Quarter3 sweing Thursday 11 0.70 11.41
## 856 2/19/2015 Quarter3 sweing Thursday 8 0.70 29.40
## 857 2/19/2015 Quarter3 finishing Thursday 4 0.75 5.13
## 858 2/19/2015 Quarter3 finishing Thursday 8 0.70 5.13
## 859 2/19/2015 Quarter3 sweing Thursday 9 0.70 18.79
## 860 2/19/2015 Quarter3 finishing Thursday 5 0.75 5.13
## 861 2/19/2015 Quarter3 sweing Thursday 7 0.75 30.10
## 862 2/19/2015 Quarter3 finishing Thursday 12 0.80 5.13
## 863 2/19/2015 Quarter3 sweing Thursday 2 0.65 30.33
## 864 2/19/2015 Quarter3 sweing Thursday 10 0.70 19.68
## 865 2/22/2015 Quarter4 finishing Sunday 3 0.50 5.13
## 866 2/22/2015 Quarter4 finishing Sunday 6 0.80 2.90
## 867 2/22/2015 Quarter4 finishing Sunday 2 0.80 5.13
## 868 2/22/2015 Quarter4 finishing Sunday 11 0.60 2.90
## 869 2/22/2015 Quarter4 sweing Sunday 12 0.80 15.26
## 870 2/22/2015 Quarter4 sweing Sunday 4 0.80 30.10
## 871 2/22/2015 Quarter4 finishing Sunday 12 0.80 5.13
## 872 2/22/2015 Quarter4 finishing Sunday 9 0.80 3.94
## 873 2/22/2015 Quarter4 sweing Sunday 6 0.75 18.79
## 874 2/22/2015 Quarter4 finishing Sunday 1 0.80 3.94
## 875 2/22/2015 Quarter4 sweing Sunday 8 0.70 29.40
## 876 2/22/2015 Quarter4 sweing Sunday 2 0.70 30.33
## 877 2/22/2015 Quarter4 sweing Sunday 11 0.75 11.41
## 878 2/22/2015 Quarter4 sweing Sunday 9 0.70 18.79
## 879 2/22/2015 Quarter4 sweing Sunday 3 0.70 30.10
## 880 2/22/2015 Quarter4 sweing Sunday 10 0.70 21.25
## 881 2/22/2015 Quarter4 sweing Sunday 7 0.75 30.10
## 882 2/22/2015 Quarter4 finishing Sunday 10 0.80 3.94
## 883 2/22/2015 Quarter4 sweing Sunday 5 0.80 30.10
## 884 2/22/2015 Quarter4 finishing Sunday 7 0.70 5.13
## 885 2/23/2015 Quarter4 finishing Monday 10 0.80 3.94
## 886 2/23/2015 Quarter4 finishing Monday 8 0.70 5.13
## 887 2/23/2015 Quarter4 finishing Monday 12 0.80 5.13
## 888 2/23/2015 Quarter4 finishing Monday 3 0.80 5.13
## 889 2/23/2015 Quarter4 sweing Monday 12 0.80 15.26
## 890 2/23/2015 Quarter4 sweing Monday 4 0.80 30.10
## 891 2/23/2015 Quarter4 sweing Monday 5 0.80 30.10
## 892 2/23/2015 Quarter4 sweing Monday 7 0.75 30.10
## 893 2/23/2015 Quarter4 sweing Monday 6 0.75 18.79
## 894 2/23/2015 Quarter4 sweing Monday 11 0.75 11.41
## 895 2/23/2015 Quarter4 sweing Monday 2 0.70 30.33
## 896 2/23/2015 Quarter4 sweing Monday 8 0.70 29.40
## 897 2/23/2015 Quarter4 sweing Monday 3 0.70 29.40
## 898 2/23/2015 Quarter4 sweing Monday 9 0.70 18.79
## 899 2/23/2015 Quarter4 sweing Monday 10 0.70 21.25
## 900 2/23/2015 Quarter4 finishing Monday 6 0.80 2.90
## 901 2/23/2015 Quarter4 finishing Monday 9 0.80 2.90
## 902 2/23/2015 Quarter4 finishing Monday 2 0.80 5.13
## 903 2/23/2015 Quarter4 finishing Monday 7 0.70 5.13
## 904 2/24/2015 Quarter4 finishing Tuesday 10 0.70 2.90
## 905 2/24/2015 Quarter4 finishing Tuesday 3 0.80 4.60
## 906 2/24/2015 Quarter4 sweing Tuesday 12 0.80 15.26
## 907 2/24/2015 Quarter4 sweing Tuesday 5 0.80 30.10
## 908 2/24/2015 Quarter4 sweing Tuesday 4 0.80 30.10
## 909 2/24/2015 Quarter4 finishing Tuesday 8 0.70 4.60
## 910 2/24/2015 Quarter4 sweing Tuesday 7 0.75 30.10
## 911 2/24/2015 Quarter4 sweing Tuesday 6 0.75 18.79
## 912 2/24/2015 Quarter4 sweing Tuesday 11 0.75 11.61
## 913 2/24/2015 Quarter4 sweing Tuesday 3 0.75 29.40
## 914 2/24/2015 Quarter4 finishing Tuesday 6 0.75 2.90
## 915 2/24/2015 Quarter4 finishing Tuesday 9 0.70 2.90
## 916 2/24/2015 Quarter4 sweing Tuesday 2 0.70 30.33
## 917 2/24/2015 Quarter4 sweing Tuesday 8 0.70 29.40
## 918 2/24/2015 Quarter4 sweing Tuesday 9 0.70 18.79
## 919 2/24/2015 Quarter4 finishing Tuesday 11 0.70 2.90
## 920 2/24/2015 Quarter4 sweing Tuesday 10 0.70 21.25
## 921 2/24/2015 Quarter4 finishing Tuesday 2 0.70 3.90
## 922 2/24/2015 Quarter4 sweing Tuesday 1 0.60 22.53
## 923 2/25/2015 Quarter4 sweing Wednesday 9 0.75 18.79
## 924 2/25/2015 Quarter4 finishing Wednesday 5 0.80 4.60
## 925 2/25/2015 Quarter4 finishing Wednesday 3 0.80 4.60
## 926 2/25/2015 Quarter4 finishing Wednesday 12 0.80 4.60
## 927 2/25/2015 Quarter4 finishing Wednesday 10 0.70 2.90
## 928 2/25/2015 Quarter4 sweing Wednesday 4 0.80 30.10
## 929 2/25/2015 Quarter4 sweing Wednesday 12 0.80 15.26
## 930 2/25/2015 Quarter4 sweing Wednesday 7 0.80 30.10
## 931 2/25/2015 Quarter4 sweing Wednesday 6 0.75 18.79
## 932 2/25/2015 Quarter4 sweing Wednesday 11 0.75 11.61
## 933 2/25/2015 Quarter4 sweing Wednesday 3 0.75 29.40
## 934 2/25/2015 Quarter4 sweing Wednesday 8 0.70 29.40
## 935 2/25/2015 Quarter4 sweing Wednesday 2 0.70 30.33
## 936 2/25/2015 Quarter4 sweing Wednesday 10 0.70 21.82
## 937 2/25/2015 Quarter4 finishing Wednesday 7 0.75 4.60
## 938 2/25/2015 Quarter4 finishing Wednesday 8 0.70 4.60
## 939 2/25/2015 Quarter4 sweing Wednesday 5 0.80 30.10
## 940 2/25/2015 Quarter4 sweing Wednesday 1 0.65 22.53
## 941 2/25/2015 Quarter4 finishing Wednesday 2 0.70 3.90
## 942 2/25/2015 Quarter4 finishing Wednesday 6 0.75 2.90
## 943 2/25/2015 Quarter4 finishing Wednesday 9 0.70 2.90
## 944 2/26/2015 Quarter4 finishing Thursday 3 0.80 4.60
## 945 2/26/2015 Quarter4 finishing Thursday 5 0.80 4.60
## 946 2/26/2015 Quarter4 sweing Thursday 7 0.80 30.10
## 947 2/26/2015 Quarter4 sweing Thursday 11 0.80 11.61
## 948 2/26/2015 Quarter4 sweing Thursday 12 0.80 15.26
## 949 2/26/2015 Quarter4 finishing Thursday 1 0.50 3.94
## 950 2/26/2015 Quarter4 sweing Thursday 6 0.75 18.79
## 951 2/26/2015 Quarter4 sweing Thursday 3 0.75 29.40
## 952 2/26/2015 Quarter4 sweing Thursday 9 0.75 18.79
## 953 2/26/2015 Quarter4 sweing Thursday 8 0.75 29.40
## 954 2/26/2015 Quarter4 sweing Thursday 10 0.70 21.82
## 955 2/26/2015 Quarter4 sweing Thursday 2 0.70 30.33
## 956 2/26/2015 Quarter4 finishing Thursday 12 0.80 4.60
## 957 2/26/2015 Quarter4 finishing Thursday 2 0.70 3.90
## 958 2/26/2015 Quarter4 sweing Thursday 4 0.80 30.10
## 959 2/26/2015 Quarter4 sweing Thursday 5 0.35 27.48
## 960 2/26/2015 Quarter4 finishing Thursday 10 0.70 2.90
## 961 2/26/2015 Quarter4 finishing Thursday 9 0.75 2.90
## 962 2/26/2015 Quarter4 sweing Thursday 1 0.35 26.66
## 963 2/26/2015 Quarter4 finishing Thursday 8 0.75 4.60
## 964 2/26/2015 Quarter4 finishing Thursday 6 0.75 2.90
## 965 2/28/2015 Quarter4 finishing Saturday 3 0.80 4.60
## 966 2/28/2015 Quarter4 finishing Saturday 5 0.80 4.60
## 967 2/28/2015 Quarter4 sweing Saturday 11 0.80 11.61
## 968 2/28/2015 Quarter4 sweing Saturday 12 0.80 15.26
## 969 2/28/2015 Quarter4 sweing Saturday 7 0.80 30.10
## 970 2/28/2015 Quarter4 finishing Saturday 1 0.50 3.94
## 971 2/28/2015 Quarter4 sweing Saturday 3 0.75 29.40
## 972 2/28/2015 Quarter4 sweing Saturday 6 0.75 18.79
## 973 2/28/2015 Quarter4 sweing Saturday 8 0.75 29.40
## 974 2/28/2015 Quarter4 sweing Saturday 9 0.75 18.79
## 975 2/28/2015 Quarter4 sweing Saturday 10 0.70 21.82
## 976 2/28/2015 Quarter4 sweing Saturday 2 0.70 30.33
## 977 2/28/2015 Quarter4 finishing Saturday 12 0.80 4.60
## 978 2/28/2015 Quarter4 finishing Saturday 2 0.70 3.90
## 979 2/28/2015 Quarter4 sweing Saturday 5 0.50 27.48
## 980 2/28/2015 Quarter4 sweing Saturday 1 0.50 26.66
## 981 2/28/2015 Quarter4 sweing Saturday 4 0.50 26.66
## 982 2/28/2015 Quarter4 finishing Saturday 10 0.70 2.90
## 983 2/28/2015 Quarter4 finishing Saturday 9 0.75 2.90
## 984 2/28/2015 Quarter4 finishing Saturday 8 0.75 4.60
## 985 2/28/2015 Quarter4 finishing Saturday 6 0.75 2.90
## 986 3/1/2015 Quarter1 finishing Sunday 3 0.80 4.60
## 987 3/1/2015 Quarter1 finishing Sunday 8 0.75 4.60
## 988 3/1/2015 Quarter1 sweing Sunday 12 0.80 15.26
## 989 3/1/2015 Quarter1 sweing Sunday 8 0.75 29.40
## 990 3/1/2015 Quarter1 sweing Sunday 6 0.75 18.79
## 991 3/1/2015 Quarter1 sweing Sunday 3 0.75 29.40
## 992 3/1/2015 Quarter1 sweing Sunday 9 0.75 18.79
## 993 3/1/2015 Quarter1 sweing Sunday 5 0.60 27.48
## 994 3/1/2015 Quarter1 sweing Sunday 10 0.70 21.82
## 995 3/1/2015 Quarter1 sweing Sunday 1 0.60 26.66
## 996 3/1/2015 Quarter1 sweing Sunday 2 0.70 30.33
## 997 3/1/2015 Quarter1 sweing Sunday 11 0.80 11.61
## 998 3/1/2015 Quarter1 finishing Sunday 4 0.60 3.94
## 999 3/1/2015 Quarter1 finishing Sunday 10 0.70 2.90
## 1000 3/1/2015 Quarter1 sweing Sunday 4 0.60 26.66
## 1001 3/1/2015 Quarter1 finishing Sunday 2 0.70 3.90
## 1002 3/1/2015 Quarter1 sweing Sunday 7 0.80 30.10
## 1003 3/1/2015 Quarter1 finishing Sunday 1 0.60 3.94
## 1004 3/1/2015 Quarter1 finishing Sunday 9 0.75 2.90
## 1005 3/1/2015 Quarter1 finishing Sunday 7 0.80 4.60
## 1006 3/2/2015 Quarter1 finishing Monday 2 0.70 3.90
## 1007 3/2/2015 Quarter1 finishing Monday 3 0.80 4.60
## 1008 3/2/2015 Quarter1 finishing Monday 4 0.65 3.94
## 1009 3/2/2015 Quarter1 sweing Monday 1 0.65 26.66
## 1010 3/2/2015 Quarter1 sweing Monday 12 0.80 15.26
## 1011 3/2/2015 Quarter1 finishing Monday 9 0.75 2.90
## 1012 3/2/2015 Quarter1 sweing Monday 11 0.80 11.61
## 1013 3/2/2015 Quarter1 sweing Monday 3 0.80 29.40
## 1014 3/2/2015 Quarter1 sweing Monday 7 0.80 30.10
## 1015 3/2/2015 Quarter1 finishing Monday 8 0.75 4.60
## 1016 3/2/2015 Quarter1 sweing Monday 6 0.75 18.79
## 1017 3/2/2015 Quarter1 sweing Monday 8 0.75 29.40
## 1018 3/2/2015 Quarter1 sweing Monday 9 0.75 18.79
## 1019 3/2/2015 Quarter1 sweing Monday 4 0.65 26.66
## 1020 3/2/2015 Quarter1 sweing Monday 5 0.65 27.48
## 1021 3/2/2015 Quarter1 sweing Monday 10 0.70 21.82
## 1022 3/2/2015 Quarter1 finishing Monday 10 0.70 2.90
## 1023 3/2/2015 Quarter1 finishing Monday 12 0.80 4.60
## 1024 3/2/2015 Quarter1 finishing Monday 1 0.65 3.94
## 1025 3/2/2015 Quarter1 finishing Monday 7 0.80 4.60
## 1026 3/3/2015 Quarter1 finishing Tuesday 7 0.80 4.60
## 1027 3/3/2015 Quarter1 finishing Tuesday 3 0.80 4.60
## 1028 3/3/2015 Quarter1 sweing Tuesday 11 0.80 11.41
## 1029 3/3/2015 Quarter1 sweing Tuesday 1 0.70 26.66
## 1030 3/3/2015 Quarter1 sweing Tuesday 12 0.80 15.26
## 1031 3/3/2015 Quarter1 sweing Tuesday 3 0.80 29.40
## 1032 3/3/2015 Quarter1 sweing Tuesday 7 0.80 30.10
## 1033 3/3/2015 Quarter1 sweing Tuesday 4 0.70 26.66
## 1034 3/3/2015 Quarter1 sweing Tuesday 8 0.75 29.40
## 1035 3/3/2015 Quarter1 sweing Tuesday 9 0.75 18.79
## 1036 3/3/2015 Quarter1 sweing Tuesday 6 0.75 20.20
## 1037 3/3/2015 Quarter1 finishing Tuesday 8 0.75 4.60
## 1038 3/3/2015 Quarter1 sweing Tuesday 5 0.70 27.48
## 1039 3/3/2015 Quarter1 sweing Tuesday 10 0.70 21.82
## 1040 3/3/2015 Quarter1 finishing Tuesday 12 0.80 4.60
## 1041 3/3/2015 Quarter1 finishing Tuesday 2 0.40 3.90
## 1042 3/3/2015 Quarter1 finishing Tuesday 1 0.70 3.94
## 1043 3/3/2015 Quarter1 finishing Tuesday 4 0.70 3.94
## 1044 3/3/2015 Quarter1 finishing Tuesday 10 0.70 2.90
## 1045 3/3/2015 Quarter1 finishing Tuesday 5 0.70 4.60
## 1046 3/3/2015 Quarter1 finishing Tuesday 6 0.75 2.90
## 1047 3/3/2015 Quarter1 sweing Tuesday 2 0.40 15.28
## 1048 3/4/2015 Quarter1 finishing Wednesday 3 0.80 4.60
## 1049 3/4/2015 Quarter1 finishing Wednesday 8 0.80 4.60
## 1050 3/4/2015 Quarter1 finishing Wednesday 12 0.80 4.60
## 1051 3/4/2015 Quarter1 finishing Wednesday 9 0.75 2.90
## 1052 3/4/2015 Quarter1 finishing Wednesday 1 0.70 3.94
## 1053 3/4/2015 Quarter1 finishing Wednesday 4 0.70 3.94
## 1054 3/4/2015 Quarter1 sweing Wednesday 11 0.80 11.41
## 1055 3/4/2015 Quarter1 sweing Wednesday 12 0.80 15.26
## 1056 3/4/2015 Quarter1 sweing Wednesday 3 0.80 29.40
## 1057 3/4/2015 Quarter1 sweing Wednesday 7 0.80 30.10
## 1058 3/4/2015 Quarter1 sweing Wednesday 4 0.70 26.82
## 1059 3/4/2015 Quarter1 sweing Wednesday 1 0.70 26.82
## 1060 3/4/2015 Quarter1 sweing Wednesday 9 0.75 18.79
## 1061 3/4/2015 Quarter1 sweing Wednesday 5 0.70 27.48
## 1062 3/4/2015 Quarter1 sweing Wednesday 10 0.70 21.82
## 1063 3/4/2015 Quarter1 finishing Wednesday 7 0.80 4.60
## 1064 3/4/2015 Quarter1 finishing Wednesday 5 0.70 4.60
## 1065 3/4/2015 Quarter1 finishing Wednesday 2 0.50 3.90
## 1066 3/4/2015 Quarter1 sweing Wednesday 8 0.80 29.40
## 1067 3/4/2015 Quarter1 sweing Wednesday 2 0.50 15.28
## 1068 3/4/2015 Quarter1 sweing Wednesday 6 0.75 18.79
## 1069 3/5/2015 Quarter1 finishing Thursday 8 0.80 4.60
## 1070 3/5/2015 Quarter1 finishing Thursday 2 0.60 3.90
## 1071 3/5/2015 Quarter1 finishing Thursday 11 0.80 2.90
## 1072 3/5/2015 Quarter1 finishing Thursday 12 0.80 4.60
## 1073 3/5/2015 Quarter1 finishing Thursday 1 0.70 3.94
## 1074 3/5/2015 Quarter1 finishing Thursday 4 0.70 3.94
## 1075 3/5/2015 Quarter1 finishing Thursday 3 0.80 4.60
## 1076 3/5/2015 Quarter1 sweing Thursday 11 0.80 11.41
## 1077 3/5/2015 Quarter1 sweing Thursday 3 0.80 29.40
## 1078 3/5/2015 Quarter1 sweing Thursday 12 0.80 15.26
## 1079 3/5/2015 Quarter1 sweing Thursday 1 0.70 26.82
## 1080 3/5/2015 Quarter1 sweing Thursday 9 0.75 18.79
## 1081 3/5/2015 Quarter1 sweing Thursday 4 0.70 26.82
## 1082 3/5/2015 Quarter1 sweing Thursday 5 0.70 27.48
## 1083 3/5/2015 Quarter1 sweing Thursday 10 0.70 21.82
## 1084 3/5/2015 Quarter1 sweing Thursday 2 0.60 15.28
## 1085 3/5/2015 Quarter1 finishing Thursday 9 0.75 2.90
## 1086 3/5/2015 Quarter1 sweing Thursday 7 0.80 30.10
## 1087 3/5/2015 Quarter1 sweing Thursday 6 0.35 22.53
## 1088 3/7/2015 Quarter1 finishing Saturday 12 0.80 4.60
## 1089 3/7/2015 Quarter1 sweing Saturday 12 0.80 15.26
## 1090 3/7/2015 Quarter1 sweing Saturday 1 0.70 26.82
## 1091 3/7/2015 Quarter1 finishing Saturday 7 0.80 4.60
## 1092 3/7/2015 Quarter1 finishing Saturday 5 0.35 3.94
## 1093 3/7/2015 Quarter1 sweing Saturday 4 0.70 26.82
## 1094 3/7/2015 Quarter1 sweing Saturday 3 0.80 29.40
## 1095 3/7/2015 Quarter1 sweing Saturday 11 0.80 11.41
## 1096 3/7/2015 Quarter1 finishing Saturday 6 0.50 2.90
## 1097 3/7/2015 Quarter1 sweing Saturday 9 0.75 18.79
## 1098 3/7/2015 Quarter1 sweing Saturday 10 0.70 21.82
## 1099 3/7/2015 Quarter1 finishing Saturday 1 0.70 3.94
## 1100 3/7/2015 Quarter1 finishing Saturday 4 0.70 3.94
## 1101 3/7/2015 Quarter1 finishing Saturday 11 0.80 2.90
## 1102 3/7/2015 Quarter1 sweing Saturday 2 0.65 16.10
## 1103 3/7/2015 Quarter1 finishing Saturday 8 0.80 4.60
## 1104 3/7/2015 Quarter1 finishing Saturday 2 0.65 3.90
## 1105 3/7/2015 Quarter1 sweing Saturday 6 0.50 23.41
## 1106 3/7/2015 Quarter1 sweing Saturday 5 0.70 27.48
## 1107 3/8/2015 Quarter2 finishing Sunday 3 0.80 4.60
## 1108 3/8/2015 Quarter2 finishing Sunday 12 0.80 4.60
## 1109 3/8/2015 Quarter2 finishing Sunday 9 0.75 2.90
## 1110 3/8/2015 Quarter2 finishing Sunday 1 0.75 3.94
## 1111 3/8/2015 Quarter2 finishing Sunday 4 0.75 3.94
## 1112 3/8/2015 Quarter2 finishing Sunday 2 0.70 3.90
## 1113 3/8/2015 Quarter2 finishing Sunday 5 0.50 3.94
## 1114 3/8/2015 Quarter2 sweing Sunday 4 0.75 26.82
## 1115 3/8/2015 Quarter2 sweing Sunday 1 0.75 26.82
## 1116 3/8/2015 Quarter2 sweing Sunday 3 0.80 30.10
## 1117 3/8/2015 Quarter2 sweing Sunday 12 0.80 15.26
## 1118 3/8/2015 Quarter2 sweing Sunday 11 0.80 11.41
## 1119 3/8/2015 Quarter2 finishing Sunday 11 0.80 2.90
## 1120 3/8/2015 Quarter2 sweing Sunday 9 0.75 18.79
## 1121 3/8/2015 Quarter2 sweing Sunday 10 0.70 21.82
## 1122 3/8/2015 Quarter2 sweing Sunday 2 0.70 16.10
## 1123 3/8/2015 Quarter2 sweing Sunday 6 0.60 23.41
## 1124 3/8/2015 Quarter2 sweing Sunday 8 0.60 30.48
## 1125 3/8/2015 Quarter2 sweing Sunday 5 0.50 26.82
## 1126 3/8/2015 Quarter2 finishing Sunday 8 0.60 3.90
## 1127 3/8/2015 Quarter2 finishing Sunday 10 0.70 2.90
## 1128 3/8/2015 Quarter2 finishing Sunday 6 0.60 2.90
## 1129 3/9/2015 Quarter2 finishing Monday 11 0.80 2.90
## 1130 3/9/2015 Quarter2 finishing Monday 12 0.80 4.60
## 1131 3/9/2015 Quarter2 finishing Monday 5 0.60 3.94
## 1132 3/9/2015 Quarter2 sweing Monday 4 0.75 26.82
## 1133 3/9/2015 Quarter2 sweing Monday 1 0.75 26.82
## 1134 3/9/2015 Quarter2 finishing Monday 9 0.75 2.90
## 1135 3/9/2015 Quarter2 sweing Monday 3 0.80 30.10
## 1136 3/9/2015 Quarter2 sweing Monday 12 0.80 15.26
## 1137 3/9/2015 Quarter2 sweing Monday 11 0.80 11.41
## 1138 3/9/2015 Quarter2 finishing Monday 3 0.80 4.60
## 1139 3/9/2015 Quarter2 finishing Monday 4 0.75 3.94
## 1140 3/9/2015 Quarter2 finishing Monday 1 0.75 3.94
## 1141 3/9/2015 Quarter2 sweing Monday 9 0.75 18.79
## 1142 3/9/2015 Quarter2 sweing Monday 2 0.70 16.10
## 1143 3/9/2015 Quarter2 sweing Monday 10 0.70 21.82
## 1144 3/9/2015 Quarter2 finishing Monday 2 0.70 3.90
## 1145 3/9/2015 Quarter2 sweing Monday 6 0.65 23.41
## 1146 3/9/2015 Quarter2 sweing Monday 8 0.65 30.48
## 1147 3/9/2015 Quarter2 sweing Monday 5 0.60 26.82
## 1148 3/9/2015 Quarter2 sweing Monday 7 0.50 30.48
## 1149 3/9/2015 Quarter2 finishing Monday 10 0.70 2.90
## 1150 3/9/2015 Quarter2 finishing Monday 8 0.65 3.90
## 1151 3/10/2015 Quarter2 finishing Tuesday 12 0.80 4.60
## 1152 3/10/2015 Quarter2 finishing Tuesday 5 0.60 3.94
## 1153 3/10/2015 Quarter2 sweing Tuesday 1 0.75 26.82
## 1154 3/10/2015 Quarter2 finishing Tuesday 3 0.80 4.60
## 1155 3/10/2015 Quarter2 finishing Tuesday 4 0.75 3.94
## 1156 3/10/2015 Quarter2 finishing Tuesday 1 0.75 3.94
## 1157 3/10/2015 Quarter2 sweing Tuesday 4 0.75 26.82
## 1158 3/10/2015 Quarter2 finishing Tuesday 9 0.75 2.90
## 1159 3/10/2015 Quarter2 sweing Tuesday 12 0.80 15.26
## 1160 3/10/2015 Quarter2 sweing Tuesday 3 0.80 30.10
## 1161 3/10/2015 Quarter2 sweing Tuesday 11 0.80 11.41
## 1162 3/10/2015 Quarter2 finishing Tuesday 11 0.80 2.90
## 1163 3/10/2015 Quarter2 sweing Tuesday 10 0.75 21.82
## 1164 3/10/2015 Quarter2 sweing Tuesday 9 0.75 18.79
## 1165 3/10/2015 Quarter2 finishing Tuesday 2 0.70 3.90
## 1166 3/10/2015 Quarter2 sweing Tuesday 8 0.70 30.48
## 1167 3/10/2015 Quarter2 sweing Tuesday 6 0.70 23.41
## 1168 3/10/2015 Quarter2 sweing Tuesday 2 0.70 16.10
## 1169 3/10/2015 Quarter2 sweing Tuesday 5 0.65 26.82
## 1170 3/10/2015 Quarter2 sweing Tuesday 7 0.60 30.48
## 1171 3/10/2015 Quarter2 finishing Tuesday 8 0.65 3.90
## 1172 3/10/2015 Quarter2 finishing Tuesday 7 0.50 3.90
## 1173 3/10/2015 Quarter2 finishing Tuesday 10 0.70 2.90
## 1174 3/11/2015 Quarter2 finishing Wednesday 12 0.80 4.60
## 1175 3/11/2015 Quarter2 finishing Wednesday 11 0.80 2.90
## 1176 3/11/2015 Quarter2 finishing Wednesday 2 0.75 3.90
## 1177 3/11/2015 Quarter2 finishing Wednesday 4 0.75 3.94
## 1178 3/11/2015 Quarter2 finishing Wednesday 1 0.75 3.94
## 1179 3/11/2015 Quarter2 sweing Wednesday 12 0.80 15.26
## 1180 3/11/2015 Quarter2 sweing Wednesday 3 0.80 30.10
## 1181 3/11/2015 Quarter2 sweing Wednesday 11 0.80 11.41
## 1182 3/11/2015 Quarter2 finishing Wednesday 3 0.80 4.60
## 1183 3/11/2015 Quarter2 finishing Wednesday 5 0.70 3.94
## 1184 3/11/2015 Quarter2 sweing Wednesday 10 0.75 21.82
## 1185 3/11/2015 Quarter2 sweing Wednesday 9 0.75 18.79
## 1186 3/11/2015 Quarter2 sweing Wednesday 2 0.75 16.10
## 1187 3/11/2015 Quarter2 sweing Wednesday 1 0.75 26.82
## 1188 3/11/2015 Quarter2 sweing Wednesday 4 0.75 26.82
## 1189 3/11/2015 Quarter2 sweing Wednesday 5 0.70 26.82
## 1190 3/11/2015 Quarter2 sweing Wednesday 8 0.70 30.48
## 1191 3/11/2015 Quarter2 sweing Wednesday 6 0.70 23.41
## 1192 3/11/2015 Quarter2 sweing Wednesday 7 0.65 30.48
## 1193 3/11/2015 Quarter2 finishing Wednesday 10 0.75 2.90
## 1194 3/11/2015 Quarter2 finishing Wednesday 8 0.70 3.90
## 1195 3/11/2015 Quarter2 finishing Wednesday 7 0.65 3.90
## 1196 3/11/2015 Quarter2 finishing Wednesday 9 0.75 2.90
## 1197 3/11/2015 Quarter2 finishing Wednesday 6 0.70 2.90
## wip over_time incentive idle_time idle_men no_of_style_change
## 1 1108 7080 98 0.0 0 0
## 2 NA 960 0 0.0 0 0
## 3 968 3660 50 0.0 0 0
## 4 968 3660 50 0.0 0 0
## 5 1170 1920 50 0.0 0 0
## 6 984 6720 38 0.0 0 0
## 7 NA 960 0 0.0 0 0
## 8 795 6900 45 0.0 0 0
## 9 733 6000 34 0.0 0 0
## 10 681 6900 45 0.0 0 0
## 11 872 6900 44 0.0 0 0
## 12 578 6480 45 0.0 0 0
## 13 668 3660 50 0.0 0 0
## 14 NA 960 0 0.0 0 0
## 15 NA 960 0 0.0 0 0
## 16 NA 2160 0 0.0 0 0
## 17 NA 960 0 0.0 0 0
## 18 861 7200 0 0.0 0 0
## 19 NA 1440 0 0.0 0 0
## 20 NA 6600 0 0.0 0 0
## 21 NA 5640 0 0.0 0 0
## 22 NA 960 0 0.0 0 0
## 23 NA 1560 0 0.0 0 0
## 24 NA 960 0 0.0 0 0
## 25 772 6300 50 0.0 0 0
## 26 913 6540 50 0.0 0 0
## 27 1261 7080 50 0.0 0 0
## 28 844 7080 63 0.0 0 0
## 29 1005 7080 50 0.0 0 0
## 30 659 7080 50 0.0 0 0
## 31 1152 6720 50 0.0 0 0
## 32 1138 6720 38 0.0 0 0
## 33 610 6480 56 0.0 0 0
## 34 NA 960 0 0.0 0 0
## 35 944 6600 45 0.0 0 0
## 36 NA 960 0 0.0 0 0
## 37 544 13800 0 0.0 0 0
## 38 1072 6900 40 0.0 0 0
## 39 NA 960 0 0.0 0 0
## 40 NA 960 0 0.0 0 0
## 41 NA 1560 0 0.0 0 0
## 42 NA 960 0 0.0 0 0
## 43 NA 960 0 0.0 0 0
## 44 539 6975 50 0.0 0 0
## 45 NA 6600 0 0.0 0 0
## 46 1278 7080 60 0.0 0 0
## 47 1227 7020 60 0.0 0 0
## 48 1039 6780 45 0.0 0 0
## 49 878 4260 50 0.0 0 0
## 50 1033 7080 63 0.0 0 0
## 51 782 6660 50 0.0 0 0
## 52 1216 6975 50 0.0 0 0
## 53 NA 960 0 0.0 0 0
## 54 NA 4320 0 0.0 0 0
## 55 513 6480 45 0.0 0 0
## 56 734 6600 45 0.0 0 0
## 57 1202 6900 40 0.0 0 0
## 58 NA 960 0 0.0 0 0
## 59 NA 960 0 0.0 0 0
## 60 884 6960 26 0.0 0 0
## 61 NA 960 0 0.0 0 0
## 62 NA 1920 0 0.0 0 0
## 63 NA 2400 0 0.0 0 0
## 64 NA 3840 0 0.0 0 0
## 65 NA 1920 0 0.0 0 0
## 66 1227 7080 75 0.0 0 0
## 67 NA 1920 0 0.0 0 0
## 68 NA 960 0 0.0 0 0
## 69 1255 6780 50 0.0 0 0
## 70 1047 6780 38 0.0 0 0
## 71 1138 7080 63 0.0 0 0
## 72 678 4800 50 0.0 0 0
## 73 712 7200 50 0.0 0 0
## 74 1037 7200 50 0.0 0 0
## 75 757 6900 50 0.0 0 0
## 76 759 6900 50 0.0 0 0
## 77 NA 960 0 0.0 0 0
## 78 NA 960 0 0.0 0 0
## 79 1083 7020 45 0.0 0 0
## 80 944 6600 45 0.0 0 0
## 81 NA 960 0 0.0 0 0
## 82 NA 960 0 0.0 0 0
## 83 666 6960 23 0.0 0 0
## 84 NA 4440 0 0.0 0 0
## 85 NA 1440 0 0.0 0 0
## 86 NA 1800 0 0.0 0 0
## 87 NA 2700 0 0.0 0 0
## 88 NA 1440 0 0.0 0 0
## 89 1187 10620 75 0.0 0 0
## 90 1305 10620 75 0.0 0 0
## 91 NA 1440 0 0.0 0 0
## 92 NA 1440 0 0.0 0 0
## 93 716 10350 50 0.0 0 0
## 94 925 10350 50 0.0 0 0
## 95 963 9900 50 0.0 0 0
## 96 1101 5310 50 0.0 0 0
## 97 1035 10170 38 0.0 0 0
## 98 1083 10170 38 0.0 0 0
## 99 910 4470 38 0.0 0 0
## 100 1209 10530 45 0.0 0 0
## 101 590 9900 45 0.0 0 0
## 102 NA 1440 0 0.0 0 0
## 103 808 10440 35 0.0 0 0
## 104 NA 1440 0 0.0 0 0
## 105 NA 1440 0 0.0 0 0
## 106 NA 1440 0 0.0 0 0
## 107 1179 10620 75 0.0 0 0
## 108 1324 10620 75 0.0 0 0
## 109 1135 10170 60 0.0 0 0
## 110 NA 2700 0 0.0 0 0
## 111 NA 4440 0 0.0 0 0
## 112 NA 1440 0 0.0 0 0
## 113 NA 1440 0 0.0 0 0
## 114 NA 1440 0 0.0 0 0
## 115 776 10350 63 0.0 0 0
## 116 990 10350 50 0.0 0 0
## 117 986 5490 50 0.0 0 0
## 118 924 9900 50 0.0 0 0
## 119 1120 5670 50 0.0 0 0
## 120 1066 10170 50 0.0 0 0
## 121 1144 10530 69 0.0 0 0
## 122 413 9720 40 0.0 0 0
## 123 NA 1440 0 0.0 0 0
## 124 NA 1800 0 0.0 0 0
## 125 568 9900 40 0.0 0 0
## 126 NA 1440 0 0.0 0 0
## 127 NA 1440 0 0.0 0 0
## 128 NA 12600 0 0.0 0 0
## 129 1216 10620 88 0.0 0 0
## 130 NA 1440 0 0.0 0 0
## 131 1189 10620 75 0.0 0 0
## 132 942 10530 75 0.0 0 0
## 133 1050 10170 60 0.0 0 0
## 134 1026 10170 60 0.0 0 0
## 135 NA 1440 0 0.0 0 0
## 136 NA 3840 0 0.0 0 0
## 137 783 10050 63 0.0 0 0
## 138 857 9900 50 0.0 0 0
## 139 548 15120 63 0.0 0 0
## 140 411 14640 50 0.0 0 0
## 141 1066 10530 69 0.0 0 0
## 142 NA 1440 0 0.0 0 0
## 143 NA 1440 0 0.0 0 0
## 144 NA 2160 0 0.0 0 0
## 145 NA 1440 0 0.0 0 0
## 146 NA 900 0 0.0 0 0
## 147 287 25920 38 0.0 0 0
## 148 724 10260 0 0.0 0 0
## 149 NA 2160 0 0.0 0 0
## 150 NA 2760 0 0.0 0 0
## 151 NA 6000 0 0.0 0 0
## 152 NA 1440 0 0.0 0 0
## 153 1122 10620 75 0.0 0 0
## 154 970 10170 60 0.0 0 0
## 155 1158 10170 60 0.0 0 0
## 156 NA 1440 0 0.0 0 0
## 157 NA 1440 0 0.0 0 0
## 158 NA 1440 0 0.0 0 0
## 159 660 10440 63 0.0 0 0
## 160 749 10350 63 0.0 0 0
## 161 893 4710 50 0.0 0 0
## 162 887 5490 50 0.0 0 0
## 163 1335 10620 63 0.0 0 0
## 164 1082 10530 63 0.0 0 0
## 165 1075 7080 45 0.0 0 0
## 166 749 9540 38 0.0 0 0
## 167 NA 1440 0 0.0 0 0
## 168 NA 1440 0 0.0 0 0
## 169 966 7680 0 0.0 0 0
## 170 NA 1440 0 0.0 0 0
## 171 NA 1440 0 0.0 0 0
## 172 NA 3600 0 0.0 0 0
## 173 1095 10620 88 0.0 0 0
## 174 NA 1440 0 0.0 0 0
## 175 NA 1440 0 0.0 0 0
## 176 1383 10620 75 0.0 0 0
## 177 1012 10170 45 0.0 0 0
## 178 1209 10170 60 0.0 0 0
## 179 NA 1440 0 0.0 0 0
## 180 NA 1440 0 0.0 0 0
## 181 887 5490 50 0.0 0 0
## 182 896 5670 50 0.0 0 0
## 183 805 10530 63 0.0 0 0
## 184 762 10530 38 0.0 0 0
## 185 1043 6420 0 0.0 0 0
## 186 NA 1440 0 0.0 0 0
## 187 NA 1440 0 0.0 0 0
## 188 NA 1440 0 0.0 0 0
## 189 831 9540 30 0.0 0 0
## 190 NA 1440 0 0.0 0 0
## 191 NA 1440 0 0.0 0 0
## 192 562 10440 0 0.0 0 0
## 193 1208 7980 0 0.0 0 0
## 194 NA 1440 0 0.0 0 0
## 195 NA 3240 0 0.0 0 0
## 196 NA 1800 0 0.0 0 0
## 197 NA 1440 0 0.0 0 0
## 198 NA 1440 0 0.0 0 0
## 199 1099 8220 75 0.0 0 0
## 200 1093 10620 75 0.0 0 0
## 201 1031 10170 60 0.0 0 0
## 202 1233 10170 60 0.0 0 0
## 203 NA 1440 0 0.0 0 0
## 204 NA 1440 0 0.0 0 0
## 205 941 9900 0 0.0 0 0
## 206 843 5670 50 0.0 0 0
## 207 760 4470 50 0.0 0 0
## 208 737 10530 63 0.0 0 0
## 209 NA 1440 0 0.0 0 0
## 210 381 6930 45 0.0 0 0
## 211 1141 8460 0 0.0 0 0
## 212 1004 9540 44 0.0 0 0
## 213 NA 1440 0 0.0 0 0
## 214 NA 1440 0 0.0 0 0
## 215 581 7350 0 0.0 0 0
## 216 NA 1440 0 0.0 0 0
## 217 NA 2160 0 0.0 0 0
## 218 NA 1440 0 0.0 0 0
## 219 NA 5400 0 0.0 0 0
## 220 NA 1620 0 0.0 0 0
## 221 NA 1440 0 0.0 0 0
## 222 1073 10620 75 0.0 0 0
## 223 1156 10620 75 0.0 0 0
## 224 1211 10260 60 0.0 0 0
## 225 1126 10170 60 0.0 0 0
## 226 NA 1440 0 0.0 0 0
## 227 NA 1440 0 0.0 0 0
## 228 1004 5670 50 0.0 0 0
## 229 1063 5670 50 0.0 0 0
## 230 723 10530 50 0.0 0 0
## 231 465 9900 54 0.0 0 0
## 232 NA 1440 0 0.0 0 0
## 233 NA 1440 0 0.0 0 0
## 234 NA 1440 0 0.0 0 0
## 235 530 9540 37 0.0 0 0
## 236 1297 10440 0 0.0 0 0
## 237 783 10170 23 0.0 0 0
## 238 715 10170 23 0.0 0 0
## 239 NA 1980 0 0.0 0 0
## 240 NA 2700 0 0.0 0 0
## 241 1150 10170 70 0.0 0 0
## 242 NA 1440 0 0.0 0 0
## 243 NA 1440 0 0.0 0 0
## 244 NA 1440 0 0.0 0 0
## 245 1232 10620 75 0.0 0 0
## 246 1218 10170 60 0.0 0 0
## 247 NA 1440 0 0.0 0 0
## 248 NA 1440 0 0.0 0 0
## 249 1159 2970 50 0.0 0 0
## 250 972 5670 38 0.0 0 0
## 251 1092 10620 63 0.0 0 0
## 252 965 7320 0 0.0 0 0
## 253 NA 1440 0 0.0 0 0
## 254 816 5100 23 0.0 0 0
## 255 947 3390 23 0.0 0 0
## 256 838 7200 23 0.0 0 0
## 257 NA 1260 0 0.0 0 0
## 258 1086 4260 27 0.0 0 0
## 259 NA 1260 0 0.0 0 0
## 260 NA 3600 0 0.0 0 0
## 261 NA 3420 0 0.0 0 0
## 262 NA 1440 0 0.0 0 0
## 263 NA 1440 0 0.0 0 0
## 264 NA 1440 0 0.0 0 0
## 265 1160 10620 75 0.0 0 0
## 266 1177 8970 60 0.0 0 0
## 267 1281 10170 60 0.0 0 0
## 268 1369 10620 63 0.0 0 0
## 269 1084 4950 38 0.0 0 0
## 270 1216 4950 50 0.0 0 0
## 271 391 10440 0 0.0 0 0
## 272 NA 1440 0 0.0 0 0
## 273 1102 10170 30 0.0 0 0
## 274 872 10080 26 0.0 0 0
## 275 NA 1440 0 0.0 0 0
## 276 1076 10170 23 0.0 0 0
## 277 917 9900 30 0.0 0 0
## 278 1044 9810 23 0.0 0 0
## 279 NA 2700 0 0.0 0 0
## 280 NA 1800 0 0.0 0 0
## 281 NA 1440 0 0.0 0 0
## 282 NA 1440 0 0.0 0 0
## 283 NA 1800 0 0.0 0 0
## 284 1067 5490 63 0.0 0 0
## 285 1039 5670 63 0.0 0 0
## 286 1396 10170 50 0.0 0 0
## 287 1292 10170 50 0.0 0 0
## 288 171 10620 63 0.0 0 0
## 289 1128 10620 63 0.0 0 0
## 290 865 6570 23 0.0 0 0
## 291 825 10170 50 0.0 0 0
## 292 NA 1440 0 0.0 0 0
## 293 NA 1440 0 0.0 0 0
## 294 1163 9720 35 0.0 0 0
## 295 1140 10170 30 0.0 0 0
## 296 1027 10080 38 0.0 0 0
## 297 NA 900 0 0.0 0 0
## 298 1052 10440 21 0.0 0 0
## 299 NA 1260 0 0.0 0 0
## 300 NA 1440 0 0.0 0 0
## 301 NA 2160 0 0.0 0 0
## 302 NA 1800 0 0.0 0 0
## 303 1140 5490 63 0.0 0 0
## 304 624 10170 50 0.0 0 0
## 305 1288 10170 38 0.0 0 0
## 306 1381 3660 50 0.0 0 0
## 307 882 10170 50 0.0 0 0
## 308 1002 10080 40 0.0 0 0
## 309 NA 1440 0 0.0 0 0
## 310 585 5670 56 0.0 0 0
## 311 1138 10170 35 0.0 0 0
## 312 1140 10260 44 0.0 0 0
## 313 1025 10170 26 0.0 0 0
## 314 NA 1440 0 0.0 0 0
## 315 1031 10440 30 0.0 0 0
## 316 NA 1800 0 0.0 0 0
## 317 1381 10350 24 0.0 0 0
## 318 NA 1440 0 0.0 0 0
## 319 NA 5040 0 0.0 0 0
## 320 NA 1800 0 0.0 0 0
## 321 NA 1440 0 0.0 0 0
## 322 1028 4380 50 0.0 0 0
## 323 1380 3630 50 0.0 0 0
## 324 1196 10620 63 0.0 0 0
## 325 NA 1440 0 0.0 0 0
## 326 1006 10170 38 0.0 0 0
## 327 930 10260 63 0.0 0 0
## 328 1095 10170 50 0.0 0 0
## 329 938 10080 63 0.0 0 0
## 330 1484 10260 50 0.0 0 0
## 331 NA 1440 0 0.0 0 0
## 332 1255 8280 35 0.0 0 0
## 333 1040 10260 30 0.0 0 0
## 334 1492 10170 30 0.0 0 0
## 335 NA 1440 0 0.0 0 0
## 336 NA 1440 0 0.0 0 0
## 337 1111 6120 23 0.0 0 0
## 338 NA 1440 0 0.0 0 0
## 339 1047 5580 63 0.0 0 0
## 340 1434 10170 50 0.0 0 0
## 341 399 10620 63 0.0 0 0
## 342 983 10260 63 0.0 0 0
## 343 1108 10080 63 0.0 0 0
## 344 1134 8460 50 0.0 0 0
## 345 1363 10260 50 0.0 0 0
## 346 NA 1800 0 0.0 0 0
## 347 1501 10260 50 0.0 0 0
## 348 1352 10260 50 0.0 0 0
## 349 NA 1440 0 0.0 0 0
## 350 1352 3720 23 0.0 0 0
## 351 1450 10080 30 0.0 0 0
## 352 NA 2700 0 0.0 0 0
## 353 NA 6000 0 0.0 0 0
## 354 NA 5100 0 0.0 0 0
## 355 825 10080 94 0.0 0 0
## 356 916 5760 75 0.0 0 0
## 357 NA 2400 0 0.0 0 0
## 358 562 7470 38 0.0 0 0
## 359 1422 10500 60 0.0 0 0
## 360 1206 10080 75 0.0 0 0
## 361 NA 2400 0 0.0 0 0
## 362 1404 10440 50 0.0 0 0
## 363 1139 10260 63 0.0 0 0
## 364 1735 10260 50 0.0 0 0
## 365 1595 10260 34 0.0 0 0
## 366 1245 6360 23 0.0 0 0
## 367 NA 2400 0 0.0 0 0
## 368 757 4140 29 0.0 0 0
## 369 NA 2400 0 0.0 0 0
## 370 1720 10080 23 0.0 0 0
## 371 NA 2700 0 0.0 0 0
## 372 NA 6000 0 0.0 0 0
## 373 NA 8400 0 0.0 0 0
## 374 759 10080 81 0.0 0 0
## 375 1510 10620 60 0.0 0 0
## 376 955 6360 63 0.0 0 0
## 377 1328 10080 55 0.0 0 0
## 378 1384 12180 63 0.0 0 0
## 379 1244 10260 63 0.0 0 0
## 380 NA 9000 0 0.0 0 0
## 381 1480 10440 40 0.0 0 0
## 382 1863 10260 50 0.0 0 0
## 383 NA 9000 0 0.0 0 0
## 384 NA 15000 0 0.0 0 0
## 385 NA 15000 0 0.0 0 0
## 386 NA 4800 0 0.0 0 0
## 387 1492 6960 23 0.0 0 0
## 388 1859 10260 23 0.0 0 0
## 389 980 10770 30 0.0 0 0
## 390 970 10440 30 0.0 0 0
## 391 NA 12000 0 0.0 0 0
## 392 NA 4800 0 0.0 0 0
## 393 NA 5400 0 0.0 0 0
## 394 NA 2700 0 0.0 0 0
## 395 NA 1800 0 0.0 0 0
## 396 NA 1620 0 0.0 0 0
## 397 1606 10260 94 0.0 0 0
## 398 727 10260 94 0.0 0 0
## 399 NA 1800 0 0.0 0 0
## 400 NA 1440 0 0.0 0 0
## 401 NA 2160 0 0.0 0 0
## 402 NA 1620 0 0.0 0 0
## 403 1472 10260 75 0.0 0 0
## 404 1332 10080 69 0.0 0 0
## 405 1009 5640 63 0.0 0 0
## 406 1266 10260 69 0.0 0 0
## 407 1316 6120 40 0.0 0 0
## 408 1282 10260 56 0.0 0 0
## 409 1382 10440 50 0.0 0 0
## 410 NA 2160 0 0.0 0 0
## 411 1295 10170 26 0.0 0 0
## 412 925 6660 23 0.0 0 0
## 413 NA 1440 0 0.0 0 0
## 414 NA 1440 0 0.0 0 0
## 415 1448 9360 23 0.0 0 0
## 416 NA 1440 0 0.0 0 0
## 417 NA 3060 0 0.0 0 0
## 418 NA 1440 0 0.0 0 0
## 419 NA 1440 0 0.0 0 0
## 420 NA 1620 0 0.0 0 0
## 421 NA 3420 0 0.0 0 0
## 422 NA 2160 0 0.0 0 0
## 423 867 10260 94 0.0 0 0
## 424 1636 10530 81 0.0 0 0
## 425 1682 10530 75 0.0 0 0
## 426 1495 10350 55 0.0 0 0
## 427 1181 5760 63 0.0 0 0
## 428 1413 10080 69 0.0 0 0
## 429 NA 2520 0 0.0 0 0
## 430 360 10170 40 0.0 0 0
## 431 1296 6120 40 0.0 0 0
## 432 1217 10440 50 0.0 0 0
## 433 1086 10440 26 0.0 0 0
## 434 NA 1620 0 0.0 0 0
## 435 532 10260 40 0.0 0 0
## 436 1557 720 23 0.0 0 0
## 437 NA 720 0 0.0 0 0
## 438 NA 1800 0 0.0 0 0
## 439 NA 3780 0 0.0 0 0
## 440 NA 2160 0 0.0 0 0
## 441 NA 2700 0 0.0 0 0
## 442 NA 1800 0 0.0 0 0
## 443 NA 1800 0 0.0 0 0
## 444 1016 10170 60 0.0 0 0
## 445 1072 5760 50 0.0 0 0
## 446 1584 10260 69 0.0 0 0
## 447 1764 10260 55 0.0 0 0
## 448 1745 10440 60 0.0 0 0
## 449 1250 10080 55 0.0 0 0
## 450 NA 1620 0 0.0 0 0
## 451 1118 10320 56 0.0 0 0
## 452 1143 10440 40 0.0 0 0
## 453 1337 6120 40 0.0 0 0
## 454 NA 1440 0 0.0 0 0
## 455 1519 360 23 0.0 0 0
## 456 749 10260 23 0.0 0 0
## 457 1635 6840 119 0.0 0 0
## 458 1299 6840 119 0.0 0 0
## 459 NA 1440 0 0.0 0 0
## 460 NA 1440 0 0.0 0 0
## 461 NA 1440 0 0.0 0 0
## 462 1134 6720 70 0.0 0 0
## 463 NA 1440 0 0.0 0 0
## 464 1106 6780 60 0.0 0 0
## 465 NA 960 0 0.0 0 0
## 466 NA 1080 0 0.0 0 0
## 467 NA 960 0 0.0 0 0
## 468 1871 6960 55 0.0 0 0
## 469 NA 1200 0 0.0 0 0
## 470 NA 1200 0 0.0 0 0
## 471 1294 6960 50 0.0 0 0
## 472 1462 4080 40 0.0 0 0
## 473 976 240 23 0.0 0 0
## 474 338 3840 34 0.0 0 0
## 475 NA 960 0 0.0 0 0
## 476 1455 6960 30 0.0 0 0
## 477 1282 6480 23 0.0 0 0
## 478 1559 6840 90 0.0 0 0
## 479 1350 6840 113 0.0 0 0
## 480 NA 1800 0 0.0 0 0
## 481 NA 1200 0 0.0 0 0
## 482 NA 1800 0 0.0 0 0
## 483 1175 6720 60 0.0 0 0
## 484 1868 6960 81 0.0 0 0
## 485 NA 1200 0 0.0 0 0
## 486 1045 6960 88 0.0 0 0
## 487 1342 6780 50 0.0 0 0
## 488 NA 1080 0 0.0 0 0
## 489 1340 6960 63 0.0 0 0
## 490 1429 3600 45 0.0 0 0
## 491 NA 1440 0 0.0 0 0
## 492 NA 960 0 0.0 0 0
## 493 1413 5880 46 0.0 0 0
## 494 336 6240 0 0.0 0 0
## 495 511 1800 23 0.0 0 0
## 496 NA 960 0 0.0 0 0
## 497 958 6600 0 0.0 0 0
## 498 NA 960 0 0.0 0 0
## 499 1416 6840 113 0.0 0 0
## 500 NA 1200 0 0.0 0 0
## 501 1287 6840 100 0.0 0 0
## 502 1444 6900 88 0.0 0 0
## 503 1088 6720 88 0.0 0 0
## 504 NA 1200 0 0.0 0 0
## 505 NA 960 0 0.0 0 0
## 506 NA 960 0 0.0 0 0
## 507 NA 1200 0 0.0 0 0
## 508 NA 1200 0 0.0 0 0
## 509 1579 6960 81 0.0 0 0
## 510 1170 6960 53 0.0 0 0
## 511 1015 7080 81 0.0 0 0
## 512 NA 1200 0 0.0 0 0
## 513 1436 4200 45 0.0 0 0
## 514 NA 1080 0 0.0 0 0
## 515 1601 4320 46 0.0 0 0
## 516 717 3960 23 0.0 0 0
## 517 NA 960 0 0.0 0 0
## 518 830 6600 0 0.0 0 0
## 519 1136 6960 113 0.0 0 0
## 520 1397 6840 113 0.0 0 0
## 521 NA 1200 0 0.0 0 0
## 522 NA 960 0 0.0 0 0
## 523 NA 1200 0 0.0 0 0
## 524 NA 1200 0 0.0 0 0
## 525 NA 1800 0 0.0 0 0
## 526 NA 240 0 0.0 0 0
## 527 NA 1080 0 0.0 0 0
## 528 NA 240 0 0.0 0 0
## 529 NA 1200 0 0.0 0 0
## 530 NA 960 0 0.0 0 0
## 531 NA 600 0 0.0 0 0
## 532 NA 1200 0 0.0 0 0
## 533 1116 6720 93 0.0 0 0
## 534 1432 6660 88 0.0 0 0
## 535 1082 6840 81 0.0 0 0
## 536 1502 6960 81 0.0 0 0
## 537 1209 4200 45 0.0 0 0
## 538 282 5880 56 0.0 0 0
## 539 1417 6480 49 0.0 0 0
## 540 799 3960 23 0.0 0 0
## 541 1109 6720 0 0.0 0 0
## 542 1144 6480 0 0.0 0 0
## 543 NA 960 0 0.0 0 0
## 544 1396 6900 113 0.0 0 0
## 545 1582 3060 113 0.0 0 0
## 546 NA 2280 0 0.0 0 0
## 547 1124 6840 100 0.0 0 0
## 548 NA 1200 0 0.0 0 0
## 549 NA 2160 0 0.0 0 0
## 550 NA 1200 0 0.0 0 0
## 551 1282 6720 75 0.0 0 0
## 552 1472 7020 60 0.0 0 0
## 553 NA 1440 0 0.0 0 0
## 554 1282 6960 45 0.0 0 0
## 555 1276 1440 45 0.0 0 0
## 556 NA 1080 0 0.0 0 0
## 557 1192 6120 75 0.0 0 0
## 558 881 3960 26 0.0 0 0
## 559 1196 6600 0 0.0 0 0
## 560 1400 6720 0 0.0 0 0
## 561 NA 1200 0 0.0 0 0
## 562 16882 7020 113 0.0 0 0
## 563 NA 960 0 0.0 0 0
## 564 21385 7020 88 0.0 0 0
## 565 21266 6840 70 0.0 0 0
## 566 21540 6720 88 0.0 0 0
## 567 NA 1200 0 0.0 0 0
## 568 NA 1440 0 0.0 0 0
## 569 12261 3600 63 0.0 0 0
## 570 23122 5940 50 0.0 0 0
## 571 8992 6960 55 0.0 0 0
## 572 NA 1080 0 0.0 0 0
## 573 9792 6480 60 0.0 0 0
## 574 2984 3960 30 0.0 0 0
## 575 NA 960 0 0.0 0 0
## 576 NA 2280 0 0.0 0 0
## 577 839 6960 0 0.0 0 0
## 578 2698 6720 0 0.0 0 0
## 579 NA 1200 0 0.0 0 0
## 580 1435 6600 0 0.0 0 0
## 581 NA 2400 0 0.0 0 0
## 582 1500 6900 113 0.0 0 0
## 583 1188 6720 90 0.0 0 0
## 584 NA 1200 0 0.0 0 0
## 585 NA 960 0 0.0 0 0
## 586 1112 6840 100 0.0 0 0
## 587 1452 6960 100 0.0 0 0
## 588 NA 1320 0 0.0 0 0
## 589 340 5460 63 0.0 0 0
## 590 1029 2040 50 0.0 0 0
## 591 NA 1080 0 0.0 0 0
## 592 1070 6960 34 0.0 0 0
## 593 946 5760 60 0.0 0 0
## 594 913 4020 30 0.0 0 0
## 595 1363 6660 0 0.0 0 0
## 596 1639 6720 0 0.0 0 0
## 597 NA 1440 0 0.0 0 0
## 598 NA 960 0 0.0 0 0
## 599 415 6960 0 0.0 0 0
## 600 1263 6900 100 0.0 0 0
## 601 968 6840 113 0.0 0 0
## 602 1108 6720 113 0.0 0 0
## 603 NA 2160 0 0.0 0 0
## 604 NA 1200 0 0.0 0 0
## 605 NA 3000 0 0.0 0 0
## 606 1532 6900 88 0.0 0 0
## 607 1094 4080 38 0.0 0 0
## 608 1086 6960 50 0.0 0 0
## 609 NA 960 0 0.0 0 0
## 610 NA 960 0 0.0 0 0
## 611 941 3360 30 0.0 0 0
## 612 1471 6960 0 0.0 0 0
## 613 1042 6120 60 0.0 0 0
## 614 1248 6840 0 0.0 0 0
## 615 NA 1080 0 0.0 0 0
## 616 326 5820 0 90.0 10 0
## 617 NA 960 0 0.0 0 0
## 618 287 6060 23 150.0 15 0
## 619 1300 6780 113 0.0 0 0
## 620 1485 6900 113 0.0 0 0
## 621 1039 6720 113 0.0 0 0
## 622 NA 2640 0 0.0 0 0
## 623 1063 6840 100 0.0 0 0
## 624 NA 960 0 0.0 0 0
## 625 NA 1080 0 0.0 0 0
## 626 NA 1200 0 0.0 0 0
## 627 NA 1440 0 0.0 0 0
## 628 1083 720 38 0.0 0 0
## 629 1069 6960 50 0.0 0 0
## 630 NA 960 0 0.0 0 0
## 631 668 2520 34 0.0 0 0
## 632 766 2760 30 0.0 0 0
## 633 557 6960 0 0.0 0 0
## 634 1608 6960 0 0.0 0 0
## 635 417 6360 23 0.0 0 1
## 636 1167 6840 0 0.0 0 0
## 637 NA 3000 0 0.0 0 0
## 638 1186 6900 113 0.0 0 0
## 639 1060 6840 100 0.0 0 0
## 640 1534 6780 88 0.0 0 0
## 641 1142 6720 88 0.0 0 0
## 642 NA 1080 0 0.0 0 0
## 643 NA 1200 0 0.0 0 0
## 644 NA 960 0 0.0 0 0
## 645 1021 4080 63 0.0 0 0
## 646 829 6960 50 0.0 0 0
## 647 NA 960 0 0.0 0 0
## 648 813 1560 34 0.0 0 0
## 649 677 3240 45 0.0 0 0
## 650 NA 1200 0 0.0 0 0
## 651 658 6960 0 270.0 45 0
## 652 486 6780 30 0.0 0 1
## 653 687 7500 0 0.0 0 0
## 654 NA 960 0 0.0 0 0
## 655 652 6840 0 300.0 37 0
## 656 1233 6900 113 0.0 0 0
## 657 NA 1440 0 0.0 0 0
## 658 1388 6720 88 0.0 0 0
## 659 1615 6780 88 0.0 0 0
## 660 1283 6720 88 0.0 0 0
## 661 NA 1200 0 0.0 0 0
## 662 NA 1080 0 0.0 0 0
## 663 NA 2160 0 0.0 0 0
## 664 NA 1800 0 0.0 0 0
## 665 1026 2880 63 0.0 0 0
## 666 909 6960 50 0.0 0 0
## 667 670 3960 34 0.0 0 0
## 668 629 3240 45 0.0 0 0
## 669 754 7020 0 0.0 0 0
## 670 NA 960 0 0.0 0 0
## 671 NA 960 0 0.0 0 0
## 672 712 6780 44 0.0 0 1
## 673 148 6960 0 0.0 0 0
## 674 154 6840 0 0.0 0 0
## 675 NA 2160 0 0.0 0 0
## 676 NA 1200 0 0.0 0 0
## 677 1127 120 88 0.0 0 0
## 678 1506 3600 70 0.0 0 0
## 679 1413 360 70 0.0 0 0
## 680 NA 960 0 0.0 0 0
## 681 970 4080 63 0.0 0 0
## 682 1271 5400 50 0.0 0 0
## 683 1073 6960 50 0.0 0 0
## 684 767 3300 50 0.0 0 1
## 685 103 0 45 0.0 0 0
## 686 NA 1800 0 0.0 0 0
## 687 773 7020 40 0.0 0 0
## 688 NA 960 0 0.0 0 0
## 689 708 4080 0 0.0 0 0
## 690 842 6960 0 0.0 0 1
## 691 901 6960 0 0.0 0 1
## 692 NA 1080 0 0.0 0 0
## 693 NA 1080 0 0.0 0 0
## 694 NA 2160 0 0.0 0 0
## 695 1268 0 88 0.0 0 0
## 696 1546 0 88 0.0 0 0
## 697 813 0 88 0.0 0 0
## 698 1512 0 88 0.0 0 0
## 699 NA 1440 0 0.0 0 0
## 700 1263 2160 38 0.0 0 0
## 701 900 4080 50 0.0 0 0
## 702 NA 1800 0 0.0 0 0
## 703 640 2400 0 0.0 0 0
## 704 13 3240 34 0.0 0 0
## 705 855 7020 45 0.0 0 0
## 706 NA 960 0 0.0 0 0
## 707 855 7020 40 0.0 0 1
## 708 NA 960 0 0.0 0 0
## 709 NA 960 0 0.0 0 0
## 710 1025 6960 23 0.0 0 1
## 711 1061 6960 30 0.0 0 1
## 712 NA 1800 0 0.0 0 0
## 713 NA 1080 0 0.0 0 0
## 714 1557 0 90 0.0 0 0
## 715 1498 0 113 0.0 0 0
## 716 NA 1440 0 0.0 0 0
## 717 NA 2160 0 0.0 0 0
## 718 NA 240 0 0.0 0 0
## 719 598 0 75 0.0 0 0
## 720 656 3480 38 0.0 0 0
## 721 854 4080 50 0.0 0 0
## 722 609 3240 50 0.0 0 0
## 723 788 7380 56 0.0 0 0
## 724 1069 4560 30 0.0 0 1
## 725 667 5940 40 0.0 0 1
## 726 NA 1440 0 0.0 0 0
## 727 829 3360 23 0.0 0 1
## 728 NA 960 0 0.0 0 0
## 729 11 6840 0 0.0 0 1
## 730 434 3240 0 0.0 0 1
## 731 1397 0 138 0.0 0 0
## 732 NA 1800 0 0.0 0 0
## 733 1327 0 113 0.0 0 0
## 734 NA 1080 0 0.0 0 0
## 735 894 4080 50 0.0 0 0
## 736 NA 1440 0 0.0 0 0
## 737 610 7080 56 0.0 0 0
## 738 779 3960 0 0.0 0 0
## 739 NA 1440 0 0.0 0 0
## 740 NA 960 0 0.0 0 0
## 741 419 7080 0 0.0 0 1
## 742 NA 2160 0 0.0 0 0
## 743 NA 240 0 0.0 0 0
## 744 909 7080 0 0.0 0 1
## 745 1039 2280 0 0.0 0 2
## 746 14 6960 0 0.0 0 0
## 747 1193 7080 0 0.0 0 1
## 748 10 6000 0 0.0 0 0
## 749 770 6960 0 0.0 0 1
## 750 1416 6840 113 0.0 0 0
## 751 NA 1800 0 0.0 0 0
## 752 NA 2400 0 0.0 0 0
## 753 NA 1080 0 0.0 0 0
## 754 942 4080 63 0.0 0 0
## 755 674 3660 63 0.0 0 0
## 756 NA 1440 0 0.0 0 0
## 757 481 7140 0 0.0 0 1
## 758 664 7140 56 0.0 0 0
## 759 NA 960 0 0.0 0 0
## 760 824 5160 0 0.0 0 1
## 761 957 7200 0 0.0 0 1
## 762 1039 2280 23 0.0 0 2
## 763 822 4080 0 0.0 0 0
## 764 1261 6960 30 0.0 0 1
## 765 NA 960 0 0.0 0 0
## 766 NA 960 0 0.0 0 0
## 767 NA 960 0 0.0 0 0
## 768 NA 960 0 0.0 0 0
## 769 1420 6840 113 0.0 0 0
## 770 NA 1080 0 0.0 0 0
## 771 1120 1440 50 0.0 0 0
## 772 NA 240 0 0.0 0 0
## 773 679 7140 0 0.0 0 0
## 774 NA 1200 0 0.0 0 0
## 775 881 7080 0 0.0 0 1
## 776 507 5880 40 2.0 10 1
## 777 814 4080 0 0.0 0 0
## 778 700 2640 23 0.0 0 2
## 779 NA 960 0 0.0 0 0
## 780 NA 960 0 0.0 0 0
## 781 919 7140 0 0.0 0 1
## 782 1361 6960 30 0.0 0 1
## 783 12 6900 0 0.0 0 0
## 784 NA 2400 0 0.0 0 0
## 785 1688 5280 0 0.0 0 1
## 786 1422 6840 113 0.0 0 0
## 787 NA 1200 0 0.0 0 0
## 788 NA 1080 0 0.0 0 0
## 789 NA 960 0 0.0 0 0
## 790 1263 600 63 0.0 0 1
## 791 461 0 0 0.0 0 0
## 792 1079 3720 38 0.0 0 0
## 793 NA 960 0 0.0 0 0
## 794 895 3960 0 0.0 0 0
## 795 912 7020 0 0.0 0 1
## 796 NA 1800 0 0.0 0 0
## 797 784 600 30 0.0 0 1
## 798 NA 1200 0 0.0 0 0
## 799 7 7080 27 2.0 10 2
## 800 680 2160 30 0.0 0 2
## 801 1131 5280 0 0.0 0 1
## 802 2103 5400 0 0.0 0 1
## 803 NA 1800 0 0.0 0 0
## 804 1445 6840 113 0.0 0 0
## 805 NA 960 0 0.0 0 0
## 806 NA 1200 0 0.0 0 0
## 807 NA 1080 0 0.0 0 0
## 808 1133 4080 38 0.0 0 0
## 809 NA 1800 0 0.0 0 0
## 810 726 3360 0 0.0 0 0
## 811 849 7020 45 0.0 0 1
## 812 NA 960 0 0.0 0 0
## 813 562 840 30 0.0 0 1
## 814 1054 3420 30 0.0 0 2
## 815 1422 6960 50 0.0 0 1
## 816 NA 960 0 0.0 0 0
## 817 680 7140 0 0.0 0 0
## 818 2120 5520 0 0.0 0 1
## 819 179 0 23 5.0 30 2
## 820 NA 960 0 0.0 0 0
## 821 NA 1800 0 0.0 0 0
## 822 838 6720 0 0.0 0 1
## 823 741 0 0 8.0 35 1
## 824 NA 1200 0 0.0 0 0
## 825 NA 1440 0 0.0 0 0
## 826 NA 1440 0 0.0 0 0
## 827 685 3360 30 0.0 0 2
## 828 864 480 50 0.0 0 1
## 829 511 0 0 0.0 0 0
## 830 1095 4080 63 0.0 0 0
## 831 1374 3960 63 0.0 0 0
## 832 759 3960 34 0.0 0 0
## 833 553 2280 45 0.0 0 1
## 834 NA 960 0 0.0 0 0
## 835 1057 0 40 0.0 0 1
## 836 1587 4560 30 0.0 0 1
## 837 NA 960 0 0.0 0 0
## 838 NA 960 0 0.0 0 0
## 839 NA 960 0 0.0 0 0
## 840 NA 960 0 0.0 0 0
## 841 868 6840 0 0.0 0 1
## 842 1119 5640 0 8.0 35 1
## 843 NA 960 0 0.0 0 0
## 844 962 4560 0 4.5 30 2
## 845 NA 2880 0 0.0 0 0
## 846 1126 1080 38 0.0 0 0
## 847 265 3840 63 0.0 0 0
## 848 859 7020 63 0.0 0 1
## 849 276 600 63 3.5 15 0
## 850 NA 4320 0 0.0 0 0
## 851 899 3960 56 0.0 0 0
## 852 NA 2400 0 0.0 0 0
## 853 NA 3600 0 0.0 0 0
## 854 247 6960 50 0.0 0 1
## 855 653 3480 30 0.0 0 2
## 856 1116 6240 0 0.0 0 2
## 857 NA 1920 0 0.0 0 0
## 858 NA 1920 0 0.0 0 0
## 859 1603 6120 30 0.0 0 1
## 860 NA 1920 0 0.0 0 0
## 861 444 0 0 5.0 20 1
## 862 NA 2160 0 0.0 0 0
## 863 841 6840 0 0.0 0 1
## 864 1410 5760 0 0.0 0 1
## 865 NA 1800 0 0.0 0 0
## 866 NA 960 0 0.0 0 0
## 867 NA 4800 0 0.0 0 0
## 868 NA 2880 0 0.0 0 0
## 869 1103 4080 63 0.0 0 0
## 870 922 5820 63 0.0 0 1
## 871 NA 2400 0 0.0 0 0
## 872 NA 2400 0 0.0 0 0
## 873 1055 3960 45 0.0 0 0
## 874 NA 2880 0 0.0 0 0
## 875 1146 6840 40 0.0 0 2
## 876 746 6840 0 0.0 0 1
## 877 834 3480 0 0.0 0 2
## 878 1717 3240 30 0.0 0 1
## 879 1041 8160 33 0.0 0 2
## 880 1531 6000 0 0.0 0 1
## 881 627 6960 0 3.5 20 1
## 882 NA 960 0 0.0 0 0
## 883 450 5700 0 4.5 25 0
## 884 NA 960 0 0.0 0 0
## 885 NA 2400 0 0.0 0 0
## 886 NA 960 0 0.0 0 0
## 887 NA 1080 0 0.0 0 0
## 888 NA 2160 0 0.0 0 0
## 889 1060 4080 63 0.0 0 0
## 890 891 7140 38 0.0 0 1
## 891 541 7140 38 0.0 0 0
## 892 709 6960 45 0.0 0 1
## 893 1100 3960 45 0.0 0 0
## 894 826 2820 0 0.0 0 2
## 895 577 2160 30 0.0 0 1
## 896 1094 6840 40 0.0 0 2
## 897 1228 6960 30 0.0 0 2
## 898 1641 6000 40 0.0 0 1
## 899 1583 6000 0 0.0 0 1
## 900 NA 960 0 0.0 0 0
## 901 NA 960 0 0.0 0 0
## 902 NA 960 0 0.0 0 0
## 903 NA 960 0 0.0 0 0
## 904 NA 1800 0 0.0 0 0
## 905 NA 1440 0 0.0 0 0
## 906 1062 4080 50 0.0 0 0
## 907 450 7140 50 0.0 0 0
## 908 901 6480 50 0.0 0 1
## 909 NA 960 0 0.0 0 0
## 910 739 5640 45 0.0 0 1
## 911 913 3360 45 0.0 0 0
## 912 698 3360 34 0.0 0 2
## 913 1172 5340 45 0.0 0 2
## 914 NA 1800 0 0.0 0 0
## 915 NA 1800 0 0.0 0 0
## 916 408 1680 30 0.0 0 1
## 917 1079 4560 40 0.0 0 2
## 918 1068 3000 30 0.0 0 1
## 919 NA 960 0 0.0 0 0
## 920 1834 6360 0 0.0 0 1
## 921 NA 960 0 0.0 0 0
## 922 708 5040 0 0.0 0 1
## 923 1085 6240 56 0.0 0 1
## 924 NA 1080 0 0.0 0 0
## 925 NA 2400 0 0.0 0 0
## 926 NA 1800 0 0.0 0 0
## 927 NA 1200 0 0.0 0 0
## 928 323 4080 50 0.0 0 1
## 929 1053 4080 50 0.0 0 0
## 930 786 7080 50 0.0 0 2
## 931 1003 3960 45 0.0 0 1
## 932 635 3360 45 0.0 0 0
## 933 1283 6960 45 0.0 0 2
## 934 847 6960 30 0.0 0 1
## 935 361 3960 30 0.0 0 1
## 936 1653 6240 0 0.0 0 2
## 937 NA 960 0 0.0 0 0
## 938 NA 960 0 0.0 0 0
## 939 15 1200 49 0.0 0 1
## 940 762 5040 0 0.0 0 1
## 941 NA 960 0 0.0 0 0
## 942 NA 960 0 0.0 0 0
## 943 NA 960 0 0.0 0 0
## 944 NA 6300 0 0.0 0 0
## 945 NA 7560 0 0.0 0 0
## 946 694 4080 50 0.0 0 1
## 947 816 2820 50 0.0 0 2
## 948 1065 4080 63 0.0 0 0
## 949 NA 3360 0 0.0 0 0
## 950 912 3960 45 0.0 0 0
## 951 1244 6840 45 0.0 0 2
## 952 1020 5640 45 0.0 0 1
## 953 916 6960 56 0.0 0 2
## 954 1591 3240 0 0.0 0 1
## 955 398 6960 0 0.0 0 1
## 956 NA 3780 0 0.0 0 0
## 957 NA 960 0 0.0 0 0
## 958 437 7080 32 0.0 0 2
## 959 413 6840 38 0.0 0 1
## 960 NA 3360 0 0.0 0 0
## 961 NA 960 0 0.0 0 0
## 962 1164 6600 23 0.0 0 2
## 963 NA 3360 0 0.0 0 0
## 964 NA 3360 0 0.0 0 0
## 965 NA 6300 0 0.0 0 0
## 966 NA 7560 0 0.0 0 0
## 967 954 0 50 0.0 0 2
## 968 1194 1700 62 0.0 0 0
## 969 644 840 38 0.0 0 1
## 970 NA 3360 0 0.0 0 0
## 971 1144 4440 45 0.0 0 2
## 972 1012 3960 45 0.0 0 0
## 973 792 4560 56 0.0 0 2
## 974 841 6240 45 0.0 0 1
## 975 1448 6120 40 0.0 0 1
## 976 512 4560 0 0.0 0 1
## 977 NA 3780 0 0.0 0 0
## 978 NA 960 0 0.0 0 0
## 979 609 6840 30 0.0 0 1
## 980 1448 6840 30 0.0 0 2
## 981 556 6960 23 0.0 0 2
## 982 NA 3360 0 0.0 0 0
## 983 NA 960 0 0.0 0 0
## 984 NA 3360 0 0.0 0 0
## 985 NA 3360 0 0.0 0 0
## 986 NA 10500 0 0.0 0 0
## 987 NA 3360 0 0.0 0 0
## 988 1106 4080 63 0.0 0 0
## 989 622 6240 56 0.0 0 0
## 990 1193 3960 45 0.0 0 0
## 991 1143 6840 45 0.0 0 0
## 992 895 6240 34 0.0 0 0
## 993 549 6720 38 0.0 0 0
## 994 1393 5640 30 0.0 0 0
## 995 1578 6840 38 0.0 0 0
## 996 254 1800 0 0.0 0 0
## 997 347 0 50 4.0 20 0
## 998 NA 960 0 0.0 0 0
## 999 NA 3360 0 0.0 0 0
## 1000 692 6840 23 0.0 0 0
## 1001 NA 960 0 0.0 0 0
## 1002 934 6960 0 3.5 15 0
## 1003 NA 3360 0 0.0 0 0
## 1004 NA 960 0 0.0 0 0
## 1005 NA 3360 0 0.0 0 0
## 1006 NA 1200 0 0.0 0 0
## 1007 NA 10080 0 0.0 0 0
## 1008 NA 960 0 0.0 0 0
## 1009 1527 6840 65 0.0 0 0
## 1010 1035 4080 63 0.0 0 0
## 1011 NA 1200 0 0.0 0 0
## 1012 632 0 50 0.0 0 0
## 1013 1231 4680 50 0.0 0 0
## 1014 616 7080 0 0.0 0 0
## 1015 NA 3360 0 0.0 0 0
## 1016 947 2880 34 0.0 0 0
## 1017 551 6840 45 0.0 0 0
## 1018 935 6240 45 0.0 0 0
## 1019 832 6780 55 0.0 0 0
## 1020 544 6720 34 0.0 0 0
## 1021 1511 3600 30 0.0 0 0
## 1022 NA 3360 0 0.0 0 0
## 1023 NA 3780 0 0.0 0 0
## 1024 NA 3360 0 0.0 0 0
## 1025 NA 3360 0 0.0 0 0
## 1026 NA 4200 0 0.0 0 0
## 1027 NA 6300 0 0.0 0 0
## 1028 601 0 50 0.0 0 0
## 1029 1562 6960 60 0.0 0 0
## 1030 983 4080 50 0.0 0 0
## 1031 1156 6840 50 0.0 0 0
## 1032 29 7080 50 0.0 0 0
## 1033 950 6960 50 0.0 0 0
## 1034 534 6840 56 0.0 0 0
## 1035 1096 6240 34 0.0 0 0
## 1036 402 3120 45 0.0 0 0
## 1037 NA 3360 0 0.0 0 0
## 1038 573 6840 30 0.0 0 0
## 1039 1313 5040 30 0.0 0 0
## 1040 NA 3780 0 0.0 0 0
## 1041 NA 6300 0 0.0 0 0
## 1042 NA 3360 0 0.0 0 0
## 1043 NA 3360 0 0.0 0 0
## 1044 NA 3360 0 0.0 0 0
## 1045 NA 3360 0 0.0 0 0
## 1046 NA 3360 0 0.0 0 0
## 1047 157 5400 0 6.5 30 1
## 1048 NA 1200 0 0.0 0 0
## 1049 NA 960 0 0.0 0 0
## 1050 NA 1080 0 0.0 0 0
## 1051 NA 960 0 0.0 0 0
## 1052 NA 960 0 0.0 0 0
## 1053 NA 960 0 0.0 0 0
## 1054 433 0 38 0.0 0 0
## 1055 961 4080 50 0.0 0 0
## 1056 1169 6840 63 0.0 0 0
## 1057 874 3960 50 0.0 0 0
## 1058 1028 6960 60 0.0 0 0
## 1059 1772 6960 50 0.0 0 0
## 1060 1206 6240 34 0.0 0 0
## 1061 586 6960 40 0.0 0 0
## 1062 1334 5760 30 0.0 0 0
## 1063 NA 8400 0 0.0 0 0
## 1064 NA 960 0 0.0 0 0
## 1065 NA 960 0 0.0 0 0
## 1066 30 6840 0 0.0 0 0
## 1067 261 5520 0 0.0 0 1
## 1068 52 3960 0 0.0 0 0
## 1069 NA 2640 0 0.0 0 0
## 1070 NA 960 0 0.0 0 0
## 1071 NA 1200 0 0.0 0 0
## 1072 NA 1080 0 0.0 0 0
## 1073 NA 960 0 0.0 0 0
## 1074 NA 960 0 0.0 0 0
## 1075 NA 1800 0 0.0 0 0
## 1076 455 3420 50 0.0 0 0
## 1077 797 1800 63 0.0 0 0
## 1078 959 4080 50 0.0 0 0
## 1079 1373 6960 50 0.0 0 0
## 1080 1228 6240 45 0.0 0 0
## 1081 1117 7080 50 0.0 0 0
## 1082 230 6960 40 0.0 0 0
## 1083 1390 6000 30 0.0 0 0
## 1084 529 1320 0 0.0 0 1
## 1085 NA 960 0 0.0 0 0
## 1086 834 1200 0 4.0 40 0
## 1087 1450 2640 0 0.0 0 1
## 1088 NA 1080 0 0.0 0 0
## 1089 986 4080 75 0.0 0 0
## 1090 1267 8160 70 0.0 0 0
## 1091 NA 6000 0 0.0 0 0
## 1092 NA 2400 0 0.0 0 0
## 1093 1195 6960 60 0.0 0 0
## 1094 983 6840 63 0.0 0 1
## 1095 471 3420 50 0.0 0 0
## 1096 NA 960 0 0.0 0 0
## 1097 1226 3480 45 0.0 0 0
## 1098 1251 6000 30 0.0 0 0
## 1099 NA 960 0 0.0 0 0
## 1100 NA 960 0 0.0 0 0
## 1101 NA 960 0 0.0 0 0
## 1102 626 4200 0 0.0 0 1
## 1103 NA 3600 0 0.0 0 0
## 1104 NA 1920 0 0.0 0 0
## 1105 1379 2280 0 0.0 0 1
## 1106 541 6960 24 0.0 0 1
## 1107 NA 1440 0 0.0 0 0
## 1108 NA 1080 0 0.0 0 0
## 1109 NA 1080 0 0.0 0 0
## 1110 NA 960 0 0.0 0 0
## 1111 NA 960 0 0.0 0 0
## 1112 NA 1200 0 0.0 0 0
## 1113 NA 960 0 0.0 0 0
## 1114 1082 6840 65 0.0 0 0
## 1115 1254 6960 65 0.0 0 0
## 1116 1278 3360 50 0.0 0 1
## 1117 1064 4080 63 0.0 0 0
## 1118 313 3420 50 0.0 0 0
## 1119 NA 960 0 0.0 0 0
## 1120 1239 5640 45 0.0 0 0
## 1121 1335 6000 30 0.0 0 0
## 1122 928 4800 30 0.0 0 1
## 1123 1266 2520 23 0.0 0 1
## 1124 869 6720 0 0.0 0 1
## 1125 711 7080 23 0.0 0 1
## 1126 NA 960 0 0.0 0 0
## 1127 NA 960 0 0.0 0 0
## 1128 NA 960 0 0.0 0 0
## 1129 NA 0 960 0.0 0 0
## 1130 NA 0 1080 0.0 0 0
## 1131 NA 0 2880 0.0 0 0
## 1132 1079 7020 65 0.0 0 0
## 1133 1322 7140 65 0.0 0 0
## 1134 NA 0 3600 0.0 0 0
## 1135 964 5160 50 0.0 0 1
## 1136 1132 4080 63 0.0 0 0
## 1137 357 3420 50 0.0 0 0
## 1138 NA 0 1440 0.0 0 0
## 1139 NA 0 960 0.0 0 0
## 1140 NA 0 960 0.0 0 0
## 1141 1193 6240 45 0.0 0 0
## 1142 817 5520 30 0.0 0 1
## 1143 1576 6000 30 0.0 0 0
## 1144 NA 0 1200 0.0 0 0
## 1145 1262 4560 35 0.0 0 1
## 1146 953 6720 26 0.0 0 1
## 1147 919 7080 23 0.0 0 1
## 1148 1161 6600 0 0.0 0 1
## 1149 NA 0 960 0.0 0 0
## 1150 NA 0 960 0.0 0 0
## 1151 NA 1080 0 0.0 0 0
## 1152 NA 1440 0 0.0 0 0
## 1153 1574 7080 75 0.0 0 0
## 1154 NA 1440 0 0.0 0 0
## 1155 NA 960 0 0.0 0 0
## 1156 NA 960 0 0.0 0 0
## 1157 1104 5880 65 0.0 0 0
## 1158 NA 1800 0 0.0 0 0
## 1159 1069 4080 63 0.0 0 0
## 1160 756 6960 63 0.0 0 1
## 1161 338 3420 50 0.0 0 0
## 1162 NA 960 0 0.0 0 0
## 1163 1499 6000 34 0.0 0 0
## 1164 1247 6240 45 0.0 0 0
## 1165 NA 960 0 0.0 0 0
## 1166 923 6840 30 0.0 0 1
## 1167 1180 4560 30 0.0 0 1
## 1168 957 5400 40 0.0 0 1
## 1169 1001 7080 26 0.0 0 1
## 1170 1017 6840 25 0.0 0 1
## 1171 NA 960 0 0.0 0 0
## 1172 NA 960 0 0.0 0 0
## 1173 NA 960 0 0.0 0 0
## 1174 NA 2160 0 0.0 0 0
## 1175 NA 2400 0 0.0 0 0
## 1176 NA 1920 0 0.0 0 0
## 1177 NA 1920 0 0.0 0 0
## 1178 NA 1920 0 0.0 0 0
## 1179 470 4080 63 0.0 0 0
## 1180 735 6960 63 0.0 0 1
## 1181 560 3420 50 0.0 0 0
## 1182 NA 1920 0 0.0 0 0
## 1183 NA 1440 0 0.0 0 0
## 1184 1674 6000 34 0.0 0 0
## 1185 290 5040 45 0.0 0 0
## 1186 971 5400 45 0.0 0 1
## 1187 1322 7080 45 0.0 0 0
## 1188 1054 7080 45 0.0 0 0
## 1189 992 6960 30 0.0 0 1
## 1190 914 6840 30 0.0 0 1
## 1191 1128 4560 40 0.0 0 1
## 1192 935 6840 26 0.0 0 1
## 1193 NA 960 0 0.0 0 0
## 1194 NA 960 0 0.0 0 0
## 1195 NA 960 0 0.0 0 0
## 1196 NA 1800 0 0.0 0 0
## 1197 NA 720 0 0.0 0 0
## no_of_workers actual_productivity
## 1 59.0 0.9407254
## 2 8.0 0.8865000
## 3 30.5 0.8005705
## 4 30.5 0.8005705
## 5 56.0 0.8003819
## 6 56.0 0.8001250
## 7 8.0 0.7551667
## 8 57.5 0.7536835
## 9 55.0 0.7530975
## 10 57.5 0.7504278
## 11 57.5 0.7211270
## 12 54.0 0.7122052
## 13 30.5 0.7070459
## 14 8.0 0.7059167
## 15 8.0 0.6766667
## 16 18.0 0.5930556
## 17 8.0 0.5407292
## 18 60.0 0.5211800
## 19 12.0 0.4363264
## 20 20.0 0.9880247
## 21 17.0 0.9878804
## 22 8.0 0.9562708
## 23 8.0 0.9452778
## 24 8.0 0.9029167
## 25 56.5 0.8007253
## 26 54.5 0.8003229
## 27 59.0 0.8003186
## 28 59.0 0.8003186
## 29 29.5 0.8002373
## 30 31.5 0.8001486
## 31 56.0 0.8001250
## 32 56.0 0.8001250
## 33 54.0 0.7872997
## 34 8.0 0.7824479
## 35 55.0 0.7502430
## 36 8.0 0.7018125
## 37 60.0 0.7001340
## 38 57.5 0.6999652
## 39 8.0 0.6283333
## 40 8.0 0.6253125
## 41 8.0 0.9913889
## 42 8.0 0.9316458
## 43 8.0 0.9152292
## 44 31.0 0.8797145
## 45 20.0 0.8616790
## 46 59.0 0.8505695
## 47 56.5 0.8504364
## 48 56.5 0.8503451
## 49 55.5 0.8005981
## 50 59.0 0.8003186
## 51 55.5 0.8002378
## 52 31.0 0.8000302
## 53 8.0 0.7921042
## 54 18.0 0.7592284
## 55 54.0 0.7503485
## 56 55.0 0.7502430
## 57 57.5 0.6999652
## 58 8.0 0.6827083
## 59 8.0 0.6676042
## 60 58.0 0.6034322
## 61 8.0 0.3458333
## 62 8.0 0.9610590
## 63 10.0 0.9395139
## 64 16.0 0.8936632
## 65 8.0 0.8753906
## 66 59.0 0.8505695
## 67 8.0 0.8208333
## 68 8.0 0.8044167
## 69 56.5 0.8006844
## 70 56.5 0.8006844
## 71 59.0 0.8003186
## 72 55.0 0.8002510
## 73 32.0 0.8002460
## 74 32.0 0.8002460
## 75 57.5 0.8000765
## 76 57.5 0.8000765
## 77 8.0 0.7633750
## 78 8.0 0.7592708
## 79 58.5 0.7504000
## 80 55.0 0.7502430
## 81 8.0 0.6766667
## 82 8.0 0.6645833
## 83 58.0 0.6000287
## 84 18.0 0.9667813
## 85 8.0 0.9364962
## 86 10.0 0.8991667
## 87 15.0 0.8886869
## 88 8.0 0.8581439
## 89 59.0 0.8505023
## 90 59.0 0.8505023
## 91 8.0 0.8096402
## 92 8.0 0.8059091
## 93 57.5 0.8005945
## 94 57.5 0.8005945
## 95 55.0 0.8002738
## 96 31.5 0.8001410
## 97 56.5 0.8001287
## 98 56.5 0.8001287
## 99 31.5 0.8000766
## 100 58.5 0.7505455
## 101 55.0 0.7500579
## 102 8.0 0.6810606
## 103 58.0 0.6499833
## 104 8.0 0.6162500
## 105 8.0 0.9514205
## 106 8.0 0.8805303
## 107 59.0 0.8505023
## 108 59.0 0.8505023
## 109 56.5 0.8501368
## 110 15.0 0.8300000
## 111 18.0 0.8271865
## 112 8.0 0.8133712
## 113 8.0 0.8059091
## 114 8.0 0.8046402
## 115 57.5 0.8005945
## 116 57.5 0.8005945
## 117 30.5 0.8003438
## 118 55.0 0.8002738
## 119 31.5 0.8002468
## 120 56.5 0.8001287
## 121 58.5 0.8000000
## 122 58.0 0.7004808
## 123 8.0 0.6810606
## 124 10.0 0.6665152
## 125 55.0 0.4121198
## 126 8.0 0.3301136
## 127 8.0 0.9476894
## 128 20.0 0.9199054
## 129 59.0 0.9002157
## 130 8.0 0.8917235
## 131 59.0 0.8505023
## 132 58.5 0.8501818
## 133 56.5 0.8501368
## 134 56.5 0.8501368
## 135 8.0 0.8357576
## 136 8.0 0.8213542
## 137 58.5 0.8004972
## 138 55.0 0.8002738
## 139 31.5 0.8001071
## 140 30.5 0.8000249
## 141 58.5 0.8000000
## 142 8.0 0.7797917
## 143 8.0 0.7359848
## 144 12.0 0.7126263
## 145 8.0 0.6810606
## 146 5.0 0.5156061
## 147 54.0 0.3499514
## 148 57.0 0.2337055
## 149 8.0 0.9850000
## 150 12.0 0.9303404
## 151 20.0 0.9115897
## 152 8.0 0.8581439
## 153 59.0 0.8511741
## 154 56.5 0.8501368
## 155 56.5 0.8501368
## 156 8.0 0.8469508
## 157 8.0 0.8174242
## 158 8.0 0.8171023
## 159 58.0 0.8010282
## 160 57.5 0.8005945
## 161 31.5 0.8003464
## 162 30.5 0.8003438
## 163 59.0 0.8001171
## 164 58.5 0.8000000
## 165 56.0 0.7500984
## 166 53.0 0.6732453
## 167 8.0 0.6700758
## 168 8.0 0.6288826
## 169 56.0 0.3880078
## 170 8.0 0.3379735
## 171 8.0 0.9353220
## 172 20.0 0.9256439
## 173 59.0 0.9002157
## 174 8.0 0.8730682
## 175 8.0 0.8581439
## 176 59.0 0.8505023
## 177 56.5 0.8501368
## 178 56.5 0.8501368
## 179 8.0 0.8282955
## 180 8.0 0.8208333
## 181 30.5 0.8003438
## 182 31.5 0.8002468
## 183 58.5 0.8000000
## 184 58.5 0.8000000
## 185 55.0 0.6901828
## 186 8.0 0.6680871
## 187 8.0 0.6535985
## 188 8.0 0.6091383
## 189 53.0 0.6002298
## 190 8.0 0.5973485
## 191 8.0 0.5904356
## 192 58.0 0.4731348
## 193 57.0 0.4529796
## 194 8.0 0.9551515
## 195 18.0 0.9422138
## 196 10.0 0.9054545
## 197 8.0 0.8805303
## 198 8.0 0.8581439
## 199 59.0 0.8505222
## 200 59.0 0.8505023
## 201 56.5 0.8501368
## 202 56.5 0.8501368
## 203 8.0 0.8174242
## 204 8.0 0.8095644
## 205 55.0 0.8002738
## 206 31.5 0.8001818
## 207 31.5 0.8000766
## 208 58.5 0.8000000
## 209 8.0 0.7250000
## 210 58.5 0.6885576
## 211 59.0 0.6500408
## 212 53.0 0.6499806
## 213 8.0 0.6481061
## 214 8.0 0.6405777
## 215 51.5 0.3506330
## 216 8.0 0.2462500
## 217 12.0 0.9520202
## 218 2.0 0.9514205
## 219 20.0 0.9127667
## 220 9.0 0.9012626
## 221 8.0 0.8581439
## 222 59.0 0.8505023
## 223 59.0 0.8505023
## 224 57.0 0.8502525
## 225 56.5 0.8501368
## 226 8.0 0.8213542
## 227 8.0 0.8059091
## 228 31.5 0.8002468
## 229 31.5 0.8002468
## 230 58.5 0.8000000
## 231 55.0 0.7055766
## 232 8.0 0.6810606
## 233 8.0 0.6700758
## 234 8.0 0.6012784
## 235 53.0 0.5823010
## 236 58.0 0.5268103
## 237 56.5 0.5003808
## 238 56.5 0.3502065
## 239 7.0 0.9346074
## 240 8.0 0.9080808
## 241 56.5 0.9001448
## 242 8.0 0.8917235
## 243 15.0 0.8645833
## 244 8.0 0.8581439
## 245 59.0 0.8505023
## 246 56.5 0.8501368
## 247 8.0 0.8375947
## 248 7.0 0.8208333
## 249 31.5 0.8003134
## 250 31.5 0.8002468
## 251 59.0 0.8001171
## 252 58.0 0.7000956
## 253 8.0 0.6673295
## 254 57.0 0.6003697
## 255 56.5 0.4999803
## 256 55.0 0.3500313
## 257 8.0 0.3323593
## 258 57.0 0.3112075
## 259 8.0 0.2473160
## 260 20.0 0.9886364
## 261 19.0 0.9531100
## 262 8.0 0.8842614
## 263 8.0 0.8606534
## 264 8.0 0.8581439
## 265 59.0 0.8505023
## 266 56.5 0.8504156
## 267 56.5 0.8501368
## 268 59.0 0.8001171
## 269 31.5 0.8000314
## 270 31.5 0.8000314
## 271 58.0 0.7000603
## 272 8.0 0.6892992
## 273 56.5 0.6606833
## 274 56.0 0.6501310
## 275 8.0 0.6069129
## 276 56.5 0.6002918
## 277 55.0 0.5000251
## 278 54.5 0.4999989
## 279 15.0 0.9871970
## 280 10.0 0.9809091
## 281 8.0 0.9746212
## 282 8.0 0.8842614
## 283 10.0 0.8268030
## 284 30.5 0.8003438
## 285 31.5 0.8002468
## 286 56.5 0.8001287
## 287 56.5 0.8001287
## 288 59.0 0.8001171
## 289 59.0 0.8001171
## 290 56.5 0.7701140
## 291 56.5 0.7005417
## 292 8.0 0.6755682
## 293 8.0 0.6618371
## 294 54.0 0.6501987
## 295 56.5 0.6002918
## 296 56.0 0.6002733
## 297 5.0 0.4657576
## 298 58.0 0.4520125
## 299 7.0 0.3138528
## 300 8.0 0.8527936
## 301 12.0 0.8383838
## 302 10.0 0.8048485
## 303 30.5 0.8003438
## 304 56.5 0.8001287
## 305 56.5 0.8001287
## 306 59.0 0.8000150
## 307 56.5 0.7005417
## 308 56.0 0.7000942
## 309 8.0 0.6920455
## 310 31.5 0.6622559
## 311 56.5 0.6504167
## 312 57.0 0.6502996
## 313 56.5 0.6502435
## 314 8.0 0.6398674
## 315 58.0 0.6000627
## 316 10.0 0.5820455
## 317 57.5 0.4032422
## 318 8.0 0.2357955
## 319 28.0 0.9772727
## 320 10.0 0.9641061
## 321 8.0 0.9589015
## 322 31.0 0.8003588
## 323 56.5 0.8001626
## 324 59.0 0.8001171
## 325 8.0 0.7938447
## 326 56.5 0.7505176
## 327 57.0 0.7500680
## 328 56.5 0.7500628
## 329 56.0 0.7500574
## 330 57.0 0.7001704
## 331 8.0 0.6838068
## 332 58.0 0.6500664
## 333 57.0 0.5764604
## 334 56.5 0.5499694
## 335 8.0 0.5383996
## 336 8.0 0.4095455
## 337 34.0 0.3502184
## 338 8.0 1.0335701
## 339 31.0 0.8002615
## 340 56.5 0.8001287
## 341 59.0 0.8001171
## 342 57.0 0.7500680
## 343 56.0 0.7500574
## 344 57.0 0.7500380
## 345 57.0 0.7500319
## 346 10.0 0.7283030
## 347 57.0 0.7001704
## 348 57.0 0.7000638
## 349 8.0 0.6398674
## 350 34.0 0.5002904
## 351 56.0 0.4003328
## 352 15.0 0.3626667
## 353 20.0 0.9785256
## 354 17.0 0.9122021
## 355 56.0 0.9005563
## 356 89.0 0.8504105
## 357 8.0 0.8271474
## 358 56.5 0.8004365
## 359 57.0 0.8004157
## 360 56.0 0.8000206
## 361 8.0 0.7581731
## 362 58.0 0.7503448
## 363 57.0 0.7500680
## 364 57.0 0.7001704
## 365 57.0 0.7000298
## 366 34.0 0.6001728
## 367 8.0 0.5948718
## 368 58.0 0.5202376
## 369 8.0 0.5051282
## 370 56.0 0.5002413
## 371 9.0 0.4707692
## 372 10.0 0.9576389
## 373 14.0 0.9407011
## 374 56.0 0.8499838
## 375 57.0 0.8003028
## 376 32.0 0.8001920
## 377 56.0 0.8000206
## 378 57.0 0.7501624
## 379 57.0 0.7500680
## 380 15.0 0.7429012
## 381 58.0 0.7002508
## 382 57.0 0.7001704
## 383 15.0 0.6702160
## 384 25.0 0.6496622
## 385 25.0 0.6496622
## 386 8.0 0.6268229
## 387 34.0 0.6004364
## 388 57.0 0.6004136
## 389 56.5 0.5555001
## 390 58.0 0.5005475
## 391 20.0 0.4605787
## 392 8.0 0.3977431
## 393 9.0 0.3274074
## 394 15.0 0.9666667
## 395 10.0 0.9372424
## 396 9.0 0.9105219
## 397 57.0 0.9006481
## 398 57.0 0.9003211
## 399 10.0 0.8960227
## 400 8.0 0.8954545
## 401 12.0 0.8705808
## 402 9.0 0.8585859
## 403 57.0 0.8006438
## 404 56.0 0.8006299
## 405 32.0 0.8005371
## 406 57.0 0.8003519
## 407 34.0 0.7500793
## 408 57.0 0.7500412
## 409 58.0 0.7002508
## 410 12.0 0.6515152
## 411 56.5 0.6504167
## 412 58.0 0.6001252
## 413 8.0 0.5783144
## 414 8.0 0.5783144
## 415 52.0 0.3499895
## 416 8.0 0.2611742
## 417 17.0 0.9737968
## 418 8.0 0.9700758
## 419 8.0 0.9700758
## 420 9.0 0.9617845
## 421 19.0 0.9551515
## 422 12.0 0.9520202
## 423 57.0 0.9003211
## 424 58.5 0.8502238
## 425 58.5 0.8009096
## 426 57.5 0.8005133
## 427 32.0 0.8003864
## 428 56.0 0.8000206
## 429 14.0 0.7491883
## 430 56.5 0.7005417
## 431 34.0 0.7004367
## 432 58.0 0.7002508
## 433 58.0 0.6504075
## 434 9.0 0.6181818
## 435 57.0 0.5911417
## 436 52.0 0.5000619
## 437 4.0 0.3295455
## 438 10.0 1.0596212
## 439 21.0 0.9977922
## 440 12.0 0.9636995
## 441 15.0 0.9591919
## 442 10.0 0.9103788
## 443 10.0 0.9103788
## 444 56.5 0.8503127
## 445 32.0 0.8003864
## 446 57.0 0.8003519
## 447 57.0 0.8000340
## 448 58.0 0.8000235
## 449 56.0 0.8000206
## 450 9.0 0.7692929
## 451 58.0 0.7500314
## 452 58.0 0.7006144
## 453 34.0 0.7004367
## 454 8.0 0.6463068
## 455 52.0 0.6001434
## 456 57.0 0.3500670
## 457 57.0 1.0002304
## 458 57.0 1.0002304
## 459 12.0 0.9795278
## 460 12.0 0.9406250
## 461 12.0 0.9263889
## 462 56.0 0.9001298
## 463 12.0 0.8618750
## 464 56.5 0.8503127
## 465 8.0 0.8454583
## 466 9.0 0.8235556
## 467 8.0 0.8035417
## 468 58.0 0.8002632
## 469 10.0 0.7880000
## 470 10.0 0.7781500
## 471 58.0 0.7003862
## 472 34.0 0.7001647
## 473 52.0 0.6503071
## 474 32.0 0.6228281
## 475 8.0 0.6225000
## 476 58.0 0.5000353
## 477 54.0 0.3704666
## 478 57.0 1.0002304
## 479 57.0 1.0002304
## 480 15.0 0.9775556
## 481 10.0 0.9456000
## 482 15.0 0.9022222
## 483 56.0 0.8505321
## 484 58.0 0.8503621
## 485 10.0 0.8405333
## 486 58.0 0.8005345
## 487 56.5 0.8004897
## 488 9.0 0.7555556
## 489 58.0 0.7505931
## 490 35.0 0.7502833
## 491 12.0 0.7226389
## 492 8.0 0.5533333
## 493 54.0 0.5005673
## 494 52.0 0.4676933
## 495 32.0 0.4379953
## 496 8.0 0.4063542
## 497 55.0 0.2853333
## 498 8.0 0.2593750
## 499 57.0 1.0002304
## 500 10.0 0.9890000
## 501 57.0 0.9501860
## 502 57.5 0.9008000
## 503 56.0 0.9001298
## 504 10.0 0.8990000
## 505 8.0 0.8775521
## 506 8.0 0.8645833
## 507 10.0 0.8569500
## 508 10.0 0.8536667
## 509 58.0 0.8503621
## 510 58.0 0.8501701
## 511 59.0 0.8004737
## 512 10.0 0.7733333
## 513 35.0 0.7506467
## 514 9.0 0.6346667
## 515 51.0 0.6005976
## 516 33.0 0.5001177
## 517 8.0 0.4925000
## 518 55.0 0.4879200
## 519 58.0 1.0004575
## 520 57.0 1.0002304
## 521 10.0 0.9718667
## 522 8.0 0.9718667
## 523 10.0 0.9718667
## 524 10.0 0.9718667
## 525 15.0 0.9718667
## 526 2.0 0.9718667
## 527 9.0 0.9718667
## 528 2.0 0.9718667
## 529 10.0 0.9718667
## 530 8.0 0.9718667
## 531 5.0 0.9718667
## 532 10.0 0.9718667
## 533 56.0 0.9202369
## 534 57.5 0.9005371
## 535 57.0 0.8506105
## 536 58.0 0.8503621
## 537 35.0 0.7506467
## 538 59.0 0.6567637
## 539 54.0 0.6501481
## 540 33.0 0.6007106
## 541 56.0 0.3888304
## 542 54.0 0.2869846
## 543 8.0 1.0115625
## 544 57.5 1.0006713
## 545 58.5 1.0004021
## 546 19.0 0.9504386
## 547 57.0 0.9501860
## 548 10.0 0.9127667
## 549 18.0 0.8921944
## 550 10.0 0.8865000
## 551 56.0 0.8505321
## 552 58.5 0.8501140
## 553 12.0 0.8450694
## 554 58.0 0.7505931
## 555 35.0 0.7504507
## 556 9.0 0.7026667
## 557 54.0 0.7005089
## 558 33.0 0.6510071
## 559 55.0 0.4668212
## 560 56.0 0.4115536
## 561 10.0 0.3141667
## 562 58.5 1.0006023
## 563 8.0 0.9942708
## 564 58.5 0.9001584
## 565 57.0 0.9001415
## 566 56.0 0.9001298
## 567 10.0 0.8569500
## 568 12.0 0.8092361
## 569 35.0 0.8004020
## 570 56.5 0.8003932
## 571 58.0 0.7999632
## 572 9.0 0.7404444
## 573 54.0 0.7003981
## 574 33.0 0.7003545
## 575 8.0 0.5619792
## 576 19.0 0.5045965
## 577 58.0 0.5008017
## 578 56.0 0.2953077
## 579 10.0 0.2803333
## 580 55.0 0.2609788
## 581 20.0 1.0014167
## 582 57.5 1.0000186
## 583 56.0 0.9999952
## 584 10.0 0.9948500
## 585 8.0 0.9769792
## 586 57.0 0.9501860
## 587 58.0 0.9499816
## 588 11.0 0.9199545
## 589 56.5 0.8004346
## 590 35.0 0.8002590
## 591 9.0 0.7782222
## 592 58.0 0.7505931
## 593 54.0 0.7005136
## 594 33.5 0.7001846
## 595 55.5 0.5864655
## 596 56.0 0.5415179
## 597 12.0 0.5375000
## 598 8.0 0.4954167
## 599 58.0 0.4151724
## 600 57.5 1.0502806
## 601 57.0 1.0002304
## 602 56.0 0.9999952
## 603 18.0 0.9667593
## 604 10.0 0.9291833
## 605 25.0 0.9157667
## 606 57.5 0.9001472
## 607 34.0 0.8004020
## 608 58.0 0.7999632
## 609 8.0 0.7797917
## 610 8.0 0.7551667
## 611 33.0 0.7007104
## 612 58.0 0.7006121
## 613 53.0 0.7002788
## 614 57.0 0.7001351
## 615 9.0 0.6875556
## 616 58.5 0.6508348
## 617 8.0 0.5316667
## 618 55.5 0.3507064
## 619 56.5 1.0004460
## 620 57.5 1.0000186
## 621 56.0 0.9999952
## 622 22.0 0.9999242
## 623 57.0 0.9501860
## 624 8.0 0.9425000
## 625 9.0 0.9066667
## 626 10.0 0.8471000
## 627 12.0 0.8454583
## 628 34.0 0.8006127
## 629 58.0 0.7999632
## 630 8.0 0.7715833
## 631 26.0 0.7504000
## 632 33.0 0.7000790
## 633 58.0 0.5622126
## 634 58.0 0.5228448
## 635 53.0 0.5007201
## 636 57.0 0.4965497
## 637 25.0 1.0506667
## 638 58.0 1.0000186
## 639 57.0 0.9501860
## 640 57.0 0.9001357
## 641 56.0 0.9001298
## 642 9.0 0.8991111
## 643 10.0 0.8700833
## 644 8.0 0.8458333
## 645 34.0 0.8004020
## 646 58.0 0.7999632
## 647 8.0 0.7715833
## 648 33.0 0.7505201
## 649 27.0 0.7500278
## 650 10.0 0.7157667
## 651 58.0 0.6622701
## 652 57.0 0.6002242
## 653 59.0 0.5456577
## 654 8.0 0.4479167
## 655 57.0 0.3653187
## 656 57.5 1.0000186
## 657 12.0 0.9286806
## 658 56.0 0.9008000
## 659 56.5 0.9001357
## 660 56.0 0.9001298
## 661 10.0 0.8930667
## 662 9.0 0.8915556
## 663 18.0 0.8755556
## 664 15.0 0.8408889
## 665 34.0 0.8003552
## 666 58.0 0.7999632
## 667 33.0 0.7506510
## 668 27.0 0.7500278
## 669 58.5 0.7006182
## 670 8.0 0.6102083
## 671 8.0 0.6074167
## 672 56.5 0.5682596
## 673 58.0 0.3555345
## 674 57.0 0.3532596
## 675 18.0 1.0579630
## 676 10.0 0.9620167
## 677 56.0 0.9008000
## 678 57.0 0.9005090
## 679 57.0 0.9004778
## 680 8.0 0.8881250
## 681 34.0 0.8004020
## 682 57.0 0.8001612
## 683 58.0 0.7999632
## 684 57.0 0.7900032
## 685 54.0 0.7506481
## 686 15.0 0.7071111
## 687 58.0 0.7006182
## 688 8.0 0.6977083
## 689 34.0 0.6125172
## 690 58.0 0.3503017
## 691 58.0 0.3503017
## 692 9.0 0.2720000
## 693 9.0 1.0048889
## 694 18.0 0.9667593
## 695 56.0 0.9006324
## 696 57.0 0.9004708
## 697 57.0 0.9004708
## 698 57.0 0.8999841
## 699 12.0 0.8536667
## 700 58.0 0.8008000
## 701 34.0 0.8004020
## 702 15.0 0.7967556
## 703 34.0 0.7507970
## 704 54.0 0.7506481
## 705 58.0 0.7503561
## 706 8.0 0.7037708
## 707 58.0 0.7006182
## 708 8.0 0.6895000
## 709 8.0 0.6283333
## 710 58.0 0.5008017
## 711 58.0 0.3935489
## 712 15.0 1.0331556
## 713 9.0 1.0200000
## 714 57.5 1.0003449
## 715 57.0 1.0000658
## 716 12.0 0.9943750
## 717 18.0 0.9120370
## 718 2.0 0.8700000
## 719 56.0 0.8503646
## 720 34.0 0.8009475
## 721 34.0 0.8004020
## 722 58.0 0.8001441
## 723 59.5 0.7504062
## 724 58.0 0.7144105
## 725 59.5 0.7005884
## 726 12.0 0.6183611
## 727 58.0 0.6000705
## 728 8.0 0.5417500
## 729 57.0 0.5369018
## 730 52.0 0.5079032
## 731 57.0 1.1004839
## 732 15.0 1.0966333
## 733 57.5 1.0003449
## 734 9.0 0.8386667
## 735 34.0 0.8004020
## 736 12.0 0.7554861
## 737 59.0 0.7507994
## 738 33.0 0.6880177
## 739 12.0 0.6648750
## 740 8.0 0.6566667
## 741 59.0 0.6377119
## 742 18.0 0.6019444
## 743 2.0 0.5800000
## 744 59.0 0.5356780
## 745 55.0 0.5001234
## 746 58.0 0.4978851
## 747 59.0 0.4634040
## 748 50.0 0.4413920
## 749 58.0 0.3503017
## 750 57.0 1.0002304
## 751 15.0 0.9292778
## 752 20.0 0.9029167
## 753 9.0 0.8008889
## 754 34.0 0.8004020
## 755 57.0 0.8003749
## 756 12.0 0.7962083
## 757 59.0 0.7503922
## 758 59.0 0.7503922
## 759 8.0 0.7256250
## 760 60.0 0.7002061
## 761 60.0 0.6020000
## 762 55.0 0.6004475
## 763 34.0 0.5572525
## 764 58.0 0.5008017
## 765 8.0 0.4833333
## 766 8.0 0.2380417
## 767 8.0 1.1204375
## 768 8.0 1.1081250
## 769 57.0 1.0002304
## 770 9.0 0.8764444
## 771 34.0 0.8008063
## 772 2.0 0.7608333
## 773 59.5 0.7225686
## 774 10.0 0.7153333
## 775 59.0 0.7006328
## 776 59.0 0.7005731
## 777 34.0 0.6815980
## 778 53.0 0.6502237
## 779 8.0 0.6052083
## 780 8.0 0.6041667
## 781 59.5 0.5986275
## 782 58.0 0.4757184
## 783 57.5 0.4321229
## 784 20.0 0.2870417
## 785 54.0 0.2830545
## 786 57.0 1.0002304
## 787 10.0 0.9604333
## 788 9.0 0.8915556
## 789 8.0 0.8645833
## 790 58.0 0.8022433
## 791 59.0 0.8009804
## 792 34.0 0.8003124
## 793 8.0 0.7733333
## 794 33.0 0.7506510
## 795 58.0 0.7503561
## 796 15.0 0.7223333
## 797 59.0 0.7004599
## 798 10.0 0.6294167
## 799 59.0 0.6219718
## 800 54.0 0.5659722
## 801 44.0 0.3554280
## 802 54.0 0.3299649
## 803 15.0 0.2580000
## 804 57.0 1.0002304
## 805 8.0 0.9275417
## 806 10.0 0.9137500
## 807 9.0 0.9025000
## 808 34.0 0.8004020
## 809 15.0 0.7866000
## 810 33.0 0.7506214
## 811 58.0 0.7503561
## 812 8.0 0.7491667
## 813 59.0 0.7008882
## 814 56.0 0.7006140
## 815 58.0 0.7006034
## 816 8.0 0.6566667
## 817 59.0 0.6534314
## 818 51.0 0.6501340
## 819 58.0 0.6009829
## 820 8.0 0.5860417
## 821 15.0 0.5814000
## 822 56.0 0.3610714
## 823 49.0 0.3021173
## 824 10.0 0.9918000
## 825 12.0 0.9368611
## 826 12.0 0.9191250
## 827 56.0 0.8211125
## 828 58.0 0.8009804
## 829 59.0 0.8009804
## 830 34.0 0.8004020
## 831 57.0 0.8002797
## 832 33.0 0.7506510
## 833 59.0 0.7505327
## 834 8.0 0.7346458
## 835 58.0 0.7006034
## 836 51.0 0.7000957
## 837 8.0 0.6718750
## 838 8.0 0.6402500
## 839 8.0 0.5800000
## 840 8.0 0.5497917
## 841 57.0 0.3281316
## 842 47.0 0.3035745
## 843 8.0 0.2565000
## 844 57.0 0.2513993
## 845 12.0 0.8164062
## 846 34.0 0.8007115
## 847 57.0 0.8004705
## 848 58.5 0.8000940
## 849 59.5 0.7999829
## 850 18.0 0.7858642
## 851 33.0 0.7506510
## 852 10.0 0.7332778
## 853 15.0 0.7101250
## 854 58.0 0.7006034
## 855 58.0 0.7005404
## 856 57.0 0.7000000
## 857 8.0 0.6840278
## 858 8.0 0.6721354
## 859 51.0 0.6386144
## 860 8.0 0.6313542
## 861 59.0 0.6111405
## 862 9.0 0.6095833
## 863 57.0 0.5853158
## 864 48.0 0.2494167
## 865 15.0 0.8721000
## 866 8.0 0.8319375
## 867 20.0 0.8300625
## 868 12.0 0.8055556
## 869 34.0 0.8004020
## 870 59.0 0.8000029
## 871 10.0 0.7837500
## 872 10.0 0.7535250
## 873 33.0 0.7506510
## 874 12.0 0.7273495
## 875 57.0 0.7006140
## 876 57.0 0.7006053
## 877 58.0 0.6721408
## 878 57.0 0.6270112
## 879 58.0 0.6265778
## 880 50.0 0.4568750
## 881 58.0 0.3935489
## 882 8.0 0.3857917
## 883 60.0 0.3075015
## 884 8.0 0.2839583
## 885 20.0 0.9557917
## 886 8.0 0.9304167
## 887 9.0 0.9025000
## 888 18.0 0.8711500
## 889 34.0 0.8004020
## 890 59.0 0.8001373
## 891 59.0 0.8001373
## 892 58.0 0.7507701
## 893 33.0 0.7506510
## 894 58.0 0.7502939
## 895 58.0 0.7006230
## 896 57.0 0.7006140
## 897 58.0 0.7003621
## 898 50.0 0.6012800
## 899 50.0 0.4179167
## 900 8.0 0.3715625
## 901 8.0 0.3715625
## 902 8.0 0.3687187
## 903 8.0 0.3564583
## 904 15.0 0.9022222
## 905 12.0 0.8113889
## 906 34.0 0.8004020
## 907 60.0 0.8001373
## 908 59.0 0.8000718
## 909 8.0 0.7914583
## 910 59.0 0.7507273
## 911 33.0 0.7506510
## 912 57.0 0.7504373
## 913 60.0 0.7501770
## 914 15.0 0.7269333
## 915 15.0 0.7269333
## 916 59.0 0.7006230
## 917 58.0 0.7005185
## 918 52.0 0.7002568
## 919 8.0 0.5046875
## 920 53.0 0.4711085
## 921 8.0 0.3250000
## 922 42.0 0.2682143
## 923 52.0 0.9708167
## 924 9.0 0.9029630
## 925 20.0 0.9008333
## 926 15.0 0.8995556
## 927 10.0 0.8458333
## 928 59.0 0.8008086
## 929 34.0 0.8004020
## 930 59.0 0.8001158
## 931 33.0 0.7506510
## 932 57.0 0.7505036
## 933 58.0 0.7502069
## 934 58.0 0.7003621
## 935 58.0 0.7000698
## 936 52.0 0.7000583
## 937 8.0 0.6766667
## 938 8.0 0.6585417
## 939 59.0 0.5987923
## 940 42.0 0.5811310
## 941 8.0 0.4403750
## 942 8.0 0.4108333
## 943 8.0 0.4108333
## 944 15.0 0.9217037
## 945 18.0 0.9216049
## 946 59.0 0.8008086
## 947 57.0 0.8005167
## 948 34.0 0.8004020
## 949 8.0 0.7688472
## 950 33.0 0.7506510
## 951 57.0 0.7504737
## 952 52.0 0.7503719
## 953 58.0 0.7502069
## 954 52.0 0.7002518
## 955 58.0 0.6623793
## 956 9.0 0.5906173
## 957 8.0 0.5565625
## 958 59.0 0.4956175
## 959 57.0 0.4499649
## 960 8.0 0.4108333
## 961 8.0 0.4078125
## 962 55.0 0.3788952
## 963 8.0 0.3765972
## 964 8.0 0.2718750
## 965 15.0 0.9217037
## 966 18.0 0.9216049
## 967 58.0 0.8007790
## 968 34.0 0.8002608
## 969 59.0 0.7999829
## 970 8.0 0.7688472
## 971 57.0 0.7507170
## 972 33.0 0.7506510
## 973 58.0 0.7504259
## 974 52.0 0.7503955
## 975 51.0 0.7002366
## 976 58.0 0.7002111
## 977 9.0 0.5906173
## 978 8.0 0.5565625
## 979 57.0 0.5504035
## 980 57.0 0.5503497
## 981 58.0 0.5002580
## 982 8.0 0.4108333
## 983 8.0 0.4078125
## 984 8.0 0.3765972
## 985 8.0 0.2718750
## 986 25.0 0.9363556
## 987 8.0 0.8136111
## 988 34.0 0.8004020
## 989 57.0 0.7507500
## 990 33.0 0.7506510
## 991 57.0 0.7504737
## 992 52.0 0.7503955
## 993 56.0 0.7074464
## 994 52.0 0.7002366
## 995 57.0 0.7000199
## 996 58.0 0.6835506
## 997 57.0 0.6824330
## 998 8.0 0.6730833
## 999 8.0 0.6645833
## 1000 57.0 0.6002398
## 1001 8.0 0.5850000
## 1002 58.0 0.5795115
## 1003 8.0 0.4487222
## 1004 8.0 0.4470833
## 1005 8.0 0.3504167
## 1006 10.0 0.9288500
## 1007 24.0 0.8603704
## 1008 8.0 0.8068792
## 1009 57.0 0.8005795
## 1010 34.0 0.8004020
## 1011 10.0 0.8004000
## 1012 57.0 0.8003092
## 1013 57.0 0.8001498
## 1014 59.0 0.8001158
## 1015 8.0 0.7733333
## 1016 33.0 0.7507970
## 1017 57.0 0.7504737
## 1018 52.0 0.7503955
## 1019 57.0 0.7502549
## 1020 56.0 0.7009036
## 1021 51.0 0.7001360
## 1022 8.0 0.6323611
## 1023 9.0 0.6076543
## 1024 8.0 0.5379194
## 1025 8.0 0.3423611
## 1026 10.0 0.9995333
## 1027 15.0 0.9029630
## 1028 56.0 0.8007018
## 1029 58.0 0.8005661
## 1030 34.0 0.8004020
## 1031 57.0 0.8003333
## 1032 59.0 0.8001158
## 1033 58.0 0.7507701
## 1034 57.0 0.7504737
## 1035 52.0 0.7503955
## 1036 33.0 0.7502126
## 1037 8.0 0.7027778
## 1038 57.0 0.7006596
## 1039 51.0 0.6999844
## 1040 9.0 0.6360494
## 1041 15.0 0.5673778
## 1042 8.0 0.5554306
## 1043 8.0 0.5554306
## 1044 8.0 0.4631944
## 1045 8.0 0.3544444
## 1046 8.0 0.3093333
## 1047 45.0 0.3027704
## 1048 10.0 0.9391667
## 1049 8.0 0.9304167
## 1050 9.0 0.8859259
## 1051 8.0 0.8337500
## 1052 8.0 0.8068792
## 1053 8.0 0.8060583
## 1054 56.0 0.8007018
## 1055 34.0 0.8004020
## 1056 57.0 0.8003333
## 1057 59.0 0.8000558
## 1058 58.0 0.7999759
## 1059 58.0 0.7506517
## 1060 52.0 0.7503955
## 1061 58.0 0.7004241
## 1062 53.0 0.7000583
## 1063 20.0 0.6848889
## 1064 8.0 0.5920833
## 1065 8.0 0.5403125
## 1066 57.0 0.4332632
## 1067 46.0 0.4041449
## 1068 33.0 0.3321465
## 1069 22.0 0.9809848
## 1070 8.0 0.9506250
## 1071 10.0 0.9272917
## 1072 9.0 0.8688889
## 1073 8.0 0.8126250
## 1074 8.0 0.8126250
## 1075 15.0 0.8101111
## 1076 56.0 0.8007018
## 1077 57.0 0.8005350
## 1078 34.0 0.8004020
## 1079 58.0 0.7506517
## 1080 52.0 0.7503955
## 1081 59.0 0.7500508
## 1082 58.0 0.7004241
## 1083 50.0 0.7004220
## 1084 46.0 0.6000991
## 1085 8.0 0.4531250
## 1086 59.0 0.3660535
## 1087 39.0 0.2636938
## 1088 9.0 0.8688889
## 1089 34.0 0.8505206
## 1090 58.0 0.8500450
## 1091 25.0 0.8254444
## 1092 10.0 0.8057500
## 1093 58.0 0.8007466
## 1094 57.0 0.8005789
## 1095 58.0 0.8000345
## 1096 8.0 0.7975000
## 1097 51.0 0.7499871
## 1098 50.0 0.7004220
## 1099 8.0 0.6648750
## 1100 8.0 0.6648750
## 1101 8.0 0.6570833
## 1102 45.0 0.6502403
## 1103 15.0 0.5907407
## 1104 8.0 0.5281250
## 1105 39.0 0.5005281
## 1106 58.0 0.4089603
## 1107 12.0 0.9519444
## 1108 9.0 0.9455556
## 1109 9.0 0.9290741
## 1110 8.0 0.8906042
## 1111 8.0 0.8906042
## 1112 10.0 0.8840000
## 1113 8.0 0.8579167
## 1114 57.0 0.8500842
## 1115 58.0 0.8500707
## 1116 57.0 0.8005111
## 1117 34.0 0.8004020
## 1118 58.0 0.8000345
## 1119 8.0 0.7552083
## 1120 52.0 0.7503719
## 1121 50.0 0.7004220
## 1122 45.0 0.7001061
## 1123 38.0 0.6010371
## 1124 56.0 0.6005286
## 1125 59.0 0.5000339
## 1126 8.0 0.4509375
## 1127 8.0 0.4410417
## 1128 8.0 0.2718750
## 1129 8.0 0.9606250
## 1130 9.0 0.9029630
## 1131 12.0 0.8643426
## 1132 58.0 0.8504462
## 1133 59.0 0.8504269
## 1134 15.0 0.8410000
## 1135 58.0 0.8008424
## 1136 34.0 0.8004020
## 1137 58.0 0.8000345
## 1138 12.0 0.7954167
## 1139 8.0 0.7953875
## 1140 8.0 0.7945667
## 1141 52.0 0.7503955
## 1142 45.0 0.7005162
## 1143 50.0 0.7004220
## 1144 10.0 0.6825000
## 1145 38.0 0.6509623
## 1146 56.0 0.6504214
## 1147 59.0 0.6000407
## 1148 55.0 0.5006109
## 1149 8.0 0.4772917
## 1150 8.0 0.2640625
## 1151 9.0 0.9200000
## 1152 12.0 0.9093917
## 1153 59.0 0.9000610
## 1154 12.0 0.8944444
## 1155 8.0 0.8815750
## 1156 8.0 0.8807542
## 1157 59.0 0.8500842
## 1158 15.0 0.8216667
## 1159 34.0 0.8004020
## 1160 58.0 0.8000718
## 1161 58.0 0.8000345
## 1162 8.0 0.7582292
## 1163 50.0 0.7506080
## 1164 52.0 0.7503955
## 1165 8.0 0.7410000
## 1166 57.0 0.7005053
## 1167 38.0 0.7002465
## 1168 45.0 0.7000519
## 1169 59.0 0.6500441
## 1170 57.0 0.6304029
## 1171 8.0 0.5606250
## 1172 8.0 0.5606250
## 1173 8.0 0.3987500
## 1174 9.0 0.9228395
## 1175 10.0 0.8740278
## 1176 8.0 0.8192708
## 1177 8.0 0.8133090
## 1178 8.0 0.8126250
## 1179 34.0 0.8004020
## 1180 58.0 0.8000718
## 1181 58.0 0.8000345
## 1182 8.0 0.7866319
## 1183 12.0 0.7588500
## 1184 50.0 0.7506080
## 1185 52.0 0.7503473
## 1186 45.0 0.7501407
## 1187 59.0 0.7500508
## 1188 59.0 0.7500508
## 1189 58.0 0.7005569
## 1190 57.0 0.7005053
## 1191 38.0 0.7002465
## 1192 57.0 0.6505965
## 1193 8.0 0.6283333
## 1194 8.0 0.6256250
## 1195 8.0 0.6256250
## 1196 15.0 0.5058889
## 1197 6.0 0.3947222
We are simulating the act of collecting data .Each sub-sample should be as long as roughly 50% percent of your data. Store each sample set in a separate data frame (e.g., df_2 might be the second of these samples). Of course, these sub-samples should each include both categorical and continuous (numeric) data.
set.seed(123)
num_samples <- 5
sample_size <- round(0.5 * nrow(data))
sample_data_frames <- list()
for (i in 1:num_samples) {
sample_df <- data[sample(1:nrow(data), size = sample_size, replace = TRUE), ]
assign(paste0("df_", i), sample_df)
sample_data_frames[[paste0("sample_", i)]] <- sample_df
}
for (i in 1:num_samples) {
cat("Number of rows in df_", i, ": ", nrow(get(paste0("df_", i))), "\n")
print(head(get(paste0("df_", i))))
}
## Number of rows in df_ 1 : 598
## date quarter department day team targeted_productivity smv
## 415 1/24/2015 Quarter4 sweing Saturday 8 0.35 15.09
## 463 1/27/2015 Quarter4 finishing Tuesday 3 0.75 3.94
## 179 1/11/2015 Quarter2 finishing Sunday 10 0.80 3.94
## 526 1/31/2015 Quarter5 finishing Saturday 9 0.75 3.94
## 195 1/12/2015 Quarter2 finishing Monday 4 0.35 4.30
## 938 2/25/2015 Quarter4 finishing Wednesday 8 0.70 4.60
## wip over_time incentive idle_time idle_men no_of_style_change
## 415 1448 9360 23 0 0 0
## 463 NA 1440 0 0 0 0
## 179 NA 1440 0 0 0 0
## 526 NA 240 0 0 0 0
## 195 NA 3240 0 0 0 0
## 938 NA 960 0 0 0 0
## no_of_workers actual_productivity
## 415 52 0.3499895
## 463 12 0.8618750
## 179 8 0.8282955
## 526 2 0.9718667
## 195 18 0.9422138
## 938 8 0.6585417
## Number of rows in df_ 2 : 598
## date quarter department day team targeted_productivity smv
## 753 2/14/2015 Quarter2 finishing Saturday 12 0.80 4.08
## 398 1/24/2015 Quarter4 sweing Saturday 4 0.75 22.52
## 1179 3/11/2015 Quarter2 sweing Wednesday 12 0.80 15.26
## 818 2/17/2015 Quarter3 sweing Tuesday 9 0.65 18.79
## 786 2/16/2015 Quarter3 sweing Monday 1 0.80 22.52
## 660 2/8/2015 Quarter2 sweing Sunday 3 0.80 22.52
## wip over_time incentive idle_time idle_men no_of_style_change
## 753 NA 1080 0 0 0 0
## 398 727 10260 94 0 0 0
## 1179 470 4080 63 0 0 0
## 818 2120 5520 0 0 0 1
## 786 1422 6840 113 0 0 0
## 660 1283 6720 88 0 0 0
## no_of_workers actual_productivity
## 753 9 0.8008889
## 398 57 0.9003211
## 1179 34 0.8004020
## 818 51 0.6501340
## 786 57 1.0002304
## 660 56 0.9001298
## Number of rows in df_ 3 : 598
## date quarter department day team targeted_productivity smv
## 674 2/8/2015 Quarter2 sweing Sunday 8 0.70 24.26
## 719 2/11/2015 Quarter2 sweing Wednesday 10 0.80 22.52
## 837 2/18/2015 Quarter3 finishing Wednesday 7 0.70 5.13
## 183 1/11/2015 Quarter2 sweing Sunday 2 0.80 28.08
## 465 1/27/2015 Quarter4 finishing Tuesday 8 0.65 3.94
## 753 2/14/2015 Quarter2 finishing Saturday 12 0.80 4.08
## wip over_time incentive idle_time idle_men no_of_style_change no_of_workers
## 674 154 6840 0 0 0 0 57.0
## 719 598 0 75 0 0 0 56.0
## 837 NA 960 0 0 0 0 8.0
## 183 805 10530 63 0 0 0 58.5
## 465 NA 960 0 0 0 0 8.0
## 753 NA 1080 0 0 0 0 9.0
## actual_productivity
## 674 0.3532596
## 719 0.8503646
## 837 0.6718750
## 183 0.8000000
## 465 0.8454583
## 753 0.8008889
## Number of rows in df_ 4 : 598
## date quarter department day team targeted_productivity smv
## 122 1/7/2015 Quarter1 sweing Wednesday 5 0.70 21.98
## 471 1/27/2015 Quarter4 sweing Tuesday 9 0.70 29.12
## 215 1/12/2015 Quarter2 sweing Monday 4 0.35 22.40
## 489 1/28/2015 Quarter4 sweing Wednesday 9 0.70 29.12
## 532 1/31/2015 Quarter5 finishing Saturday 6 0.60 3.94
## 522 1/31/2015 Quarter5 finishing Saturday 3 0.80 3.94
## wip over_time incentive idle_time idle_men no_of_style_change
## 122 413 9720 40 0 0 0
## 471 1294 6960 50 0 0 0
## 215 581 7350 0 0 0 0
## 489 1340 6960 63 0 0 0
## 532 NA 1200 0 0 0 0
## 522 NA 960 0 0 0 0
## no_of_workers actual_productivity
## 122 58.0 0.7004808
## 471 58.0 0.7003862
## 215 51.5 0.3506330
## 489 58.0 0.7505931
## 532 10.0 0.9718667
## 522 8.0 0.9718667
## Number of rows in df_ 5 : 598
## date quarter department day team targeted_productivity smv
## 209 1/12/2015 Quarter2 finishing Monday 8 0.8 2.90
## 529 1/31/2015 Quarter5 finishing Saturday 7 0.7 3.94
## 483 1/28/2015 Quarter4 sweing Wednesday 10 0.8 22.52
## 1130 3/9/2015 Quarter2 finishing Monday 12 0.8 4.60
## 1042 3/3/2015 Quarter1 finishing Tuesday 1 0.7 3.94
## 246 1/14/2015 Quarter2 sweing Wednesday 8 0.8 25.90
## wip over_time incentive idle_time idle_men no_of_style_change
## 209 NA 1440 0 0 0 0
## 529 NA 1200 0 0 0 0
## 483 1175 6720 60 0 0 0
## 1130 NA 0 1080 0 0 0
## 1042 NA 3360 0 0 0 0
## 246 1218 10170 60 0 0 0
## no_of_workers actual_productivity
## 209 8.0 0.7250000
## 529 10.0 0.9718667
## 483 56.0 0.8505321
## 1130 9.0 0.9029630
## 1042 8.0 0.5554306
## 246 56.5 0.8501368
for (i in 1:num_samples) {
cat("\nSummary of df_", i, ":\n")
print(summary(get(paste0("df_", i))))
}
##
## Summary of df_ 1 :
## date quarter department day
## Length:598 Length:598 Length:598 Length:598
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## team targeted_productivity smv wip
## Min. : 1.000 Min. :0.3500 Min. : 2.90 Min. : 11
## 1st Qu.: 3.000 1st Qu.:0.7000 1st Qu.: 3.94 1st Qu.: 783
## Median : 6.000 Median :0.7500 Median :15.26 Median : 1054
## Mean : 6.283 Mean :0.7242 Mean :15.15 Mean : 1196
## 3rd Qu.: 9.000 3rd Qu.:0.8000 3rd Qu.:24.26 3rd Qu.: 1274
## Max. :12.000 Max. :0.8000 Max. :51.02 Max. :21540
## NA's :243
## over_time incentive idle_time idle_men
## Min. : 0 Min. : 0.00 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 1440 1st Qu.: 0.00 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 4080 Median : 23.00 Median : 0.0000 Median : 0.0000
## Mean : 4609 Mean : 43.33 Mean : 0.5627 Mean : 0.3428
## 3rd Qu.: 6960 3rd Qu.: 50.00 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :15120 Max. :3600.00 Max. :150.0000 Max. :35.0000
##
## no_of_style_change no_of_workers actual_productivity
## Min. :0.0000 Min. : 2.00 Min. :0.2473
## 1st Qu.:0.0000 1st Qu.:10.00 1st Qu.:0.6503
## Median :0.0000 Median :45.00 Median :0.7842
## Mean :0.1421 Mean :35.68 Mean :0.7402
## 3rd Qu.:0.0000 3rd Qu.:57.00 3rd Qu.:0.8506
## Max. :2.0000 Max. :60.00 Max. :1.1204
##
##
## Summary of df_ 2 :
## date quarter department day
## Length:598 Length:598 Length:598 Length:598
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## team targeted_productivity smv wip
## Min. : 1.000 Min. :0.3500 Min. : 2.90 Min. : 7.0
## 1st Qu.: 3.000 1st Qu.:0.7000 1st Qu.: 3.94 1st Qu.: 723.5
## Median : 6.000 Median :0.7500 Median :15.26 Median : 980.0
## Mean : 6.319 Mean :0.7355 Mean :15.21 Mean : 965.3
## 3rd Qu.: 9.000 3rd Qu.:0.8000 3rd Qu.:24.26 3rd Qu.:1222.5
## Max. :12.000 Max. :0.8000 Max. :51.02 Max. :2120.0
## NA's :247
## over_time incentive idle_time idle_men
## Min. : 0 Min. : 0.00 Min. : 0.0000 Min. : 0.0000
## 1st Qu.: 1440 1st Qu.: 0.00 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median : 4080 Median : 23.00 Median : 0.0000 Median : 0.0000
## Mean : 4560 Mean : 34.14 Mean : 0.9281 Mean : 0.2759
## 3rd Qu.: 6960 3rd Qu.: 50.00 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :15000 Max. :1200.00 Max. :270.0000 Max. :45.0000
##
## no_of_style_change no_of_workers actual_productivity
## Min. :0.0000 Min. : 2.00 Min. :0.2337
## 1st Qu.:0.0000 1st Qu.: 8.00 1st Qu.:0.6502
## Median :0.0000 Median :34.00 Median :0.7667
## Mean :0.1304 Mean :34.64 Mean :0.7326
## 3rd Qu.:0.0000 3rd Qu.:57.00 3rd Qu.:0.8343
## Max. :2.0000 Max. :60.00 Max. :1.1204
##
##
## Summary of df_ 3 :
## date quarter department day
## Length:598 Length:598 Length:598 Length:598
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## team targeted_productivity smv wip
## Min. : 1.000 Min. :0.0700 Min. : 2.90 Min. : 7
## 1st Qu.: 4.000 1st Qu.:0.7000 1st Qu.: 3.94 1st Qu.: 730
## Median : 6.000 Median :0.7500 Median :12.52 Median : 983
## Mean : 6.368 Mean :0.7238 Mean :14.90 Mean : 1043
## 3rd Qu.: 9.000 3rd Qu.:0.8000 3rd Qu.:24.26 3rd Qu.: 1194
## Max. :12.000 Max. :0.8000 Max. :50.89 Max. :12261
## NA's :263
## over_time incentive idle_time idle_men
## Min. : 0 Min. : 0.00 Min. : 0.000 Min. : 0.0000
## 1st Qu.: 1440 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 3840 Median : 0.00 Median : 0.000 Median : 0.0000
## Mean : 4469 Mean : 28.74 Mean : 1.676 Mean : 0.8478
## 3rd Qu.: 6840 3rd Qu.: 50.00 3rd Qu.: 0.000 3rd Qu.: 0.0000
## Max. :25920 Max. :960.00 Max. :300.000 Max. :45.0000
##
## no_of_style_change no_of_workers actual_productivity
## Min. :0.0000 Min. : 2.00 Min. :0.2358
## 1st Qu.:0.0000 1st Qu.: 8.00 1st Qu.:0.6316
## Median :0.0000 Median :34.00 Median :0.7552
## Mean :0.1555 Mean :33.93 Mean :0.7239
## 3rd Qu.:0.0000 3rd Qu.:57.00 3rd Qu.:0.8501
## Max. :2.0000 Max. :60.00 Max. :1.1005
##
##
## Summary of df_ 4 :
## date quarter department day
## Length:598 Length:598 Length:598 Length:598
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## team targeted_productivity smv wip
## Min. : 1.000 Min. :0.0700 Min. : 2.90 Min. : 7.0
## 1st Qu.: 4.000 1st Qu.:0.7000 1st Qu.: 3.94 1st Qu.: 810.5
## Median : 7.000 Median :0.7500 Median :14.89 Median : 1035.0
## Mean : 6.674 Mean :0.7286 Mean :14.55 Mean : 1134.1
## 3rd Qu.: 9.750 3rd Qu.:0.8000 3rd Qu.:22.94 3rd Qu.: 1216.5
## Max. :12.000 Max. :0.8000 Max. :54.56 Max. :23122.0
## NA's :267
## over_time incentive idle_time idle_men
## Min. : 0 Min. : 0.00 Min. :0.00000 Min. : 0.0000
## 1st Qu.: 1440 1st Qu.: 0.00 1st Qu.:0.00000 1st Qu.: 0.0000
## Median : 3960 Median : 0.00 Median :0.00000 Median : 0.0000
## Mean : 4594 Mean : 39.62 Mean :0.04599 Mean : 0.2508
## 3rd Qu.: 6960 3rd Qu.: 50.00 3rd Qu.:0.00000 3rd Qu.: 0.0000
## Max. :25920 Max. :3600.00 Max. :8.00000 Max. :40.0000
##
## no_of_style_change no_of_workers actual_productivity
## Min. :0.0000 Min. : 2.00 Min. :0.2337
## 1st Qu.:0.0000 1st Qu.: 9.00 1st Qu.:0.6517
## Median :0.0000 Median :34.00 Median :0.7592
## Mean :0.1321 Mean :33.47 Mean :0.7366
## 3rd Qu.:0.0000 3rd Qu.:57.00 3rd Qu.:0.8501
## Max. :2.0000 Max. :60.00 Max. :1.0507
##
##
## Summary of df_ 5 :
## date quarter department day
## Length:598 Length:598 Length:598 Length:598
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## team targeted_productivity smv wip
## Min. : 1.000 Min. :0.0700 Min. : 2.90 Min. : 7.0
## 1st Qu.: 4.000 1st Qu.:0.7000 1st Qu.: 4.15 1st Qu.: 832.5
## Median : 7.000 Median :0.7500 Median :15.26 Median : 1054.0
## Mean : 6.761 Mean :0.7266 Mean :15.52 Mean : 1047.5
## 3rd Qu.:10.000 3rd Qu.:0.8000 3rd Qu.:25.90 3rd Qu.: 1239.8
## Max. :12.000 Max. :0.8000 Max. :54.56 Max. :12261.0
## NA's :240
## over_time incentive idle_time idle_men
## Min. : 0 Min. : 0.00 Min. :0.00000 Min. : 0.0000
## 1st Qu.: 1440 1st Qu.: 0.00 1st Qu.:0.00000 1st Qu.: 0.0000
## Median : 4080 Median : 23.00 Median :0.00000 Median : 0.0000
## Mean : 4469 Mean : 37.58 Mean :0.05017 Mean : 0.2926
## 3rd Qu.: 6840 3rd Qu.: 50.00 3rd Qu.:0.00000 3rd Qu.: 0.0000
## Max. :15120 Max. :2880.00 Max. :8.00000 Max. :40.0000
##
## no_of_style_change no_of_workers actual_productivity
## Min. :0.000 Min. : 2.00 Min. :0.2358
## 1st Qu.:0.000 1st Qu.: 9.00 1st Qu.:0.6286
## Median :0.000 Median :34.00 Median :0.7506
## Mean :0.194 Mean :35.15 Mean :0.7222
## 3rd Qu.:0.000 3rd Qu.:57.00 3rd Qu.:0.8502
## Max. :2.000 Max. :60.00 Max. :1.1005
##
The results show that productivity is stable, with most workers meeting expected performance levels. The average productivity across the sub-samples less than 1, with no major issues. However, there are some differences that need further investigation:
1-Idle time is higher in df_2 compared to the other samples, which could mean that some teams or departments experienced delays or downtime during production.
2-Overtime changes slightly between samples.This might be due to some teams working longer hours because of different workloads or delays.
3-Work-in-progress (WIP) is generally steady, but large increase in some samples suggest possible backlogs or delays in production.
We need to check which departments or teams are causing the differences in overtime and idle time. The next step is to group the data by department and calculate Z-scores to identify any anomalies.
###Scrutinize these sub-samples. Note: you might find group_by quite helpful here
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Group by department and summarize metrics for all sub-samples
for (i in 1:num_samples) {
cat("\nGrouped summary for df_", i, " (by department):\n")
group_summary <- get(paste0("df_", i)) %>%
group_by(department) %>%
summarize(
mean_productivity = mean(actual_productivity, na.rm = TRUE),
median_productivity = median(actual_productivity, na.rm = TRUE),
mean_overtime = mean(over_time, na.rm = TRUE),
median_overtime = median(over_time, na.rm = TRUE),
mean_idle_time = mean(idle_time, na.rm = TRUE),
median_idle_time = median(idle_time, na.rm = TRUE)
)
print(group_summary)
}
##
## Grouped summary for df_ 1 (by department):
## # A tibble: 3 × 7
## department mean_productivity median_productivity mean_overtime median_overtime
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 "finishin… 0.719 0.755 1727. 1080
## 2 "finishin… 0.802 0.865 2060 1440
## 3 "sweing" 0.728 0.751 6475. 6840
## # ℹ 2 more variables: mean_idle_time <dbl>, median_idle_time <dbl>
##
## Grouped summary for df_ 2 (by department):
## # A tibble: 3 × 7
## department mean_productivity median_productivity mean_overtime median_overtime
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 "finishin… 0.700 0.721 1626. 1080
## 2 "finishin… 0.766 0.821 2114. 1440
## 3 "sweing" 0.732 0.751 6450. 6840
## # ℹ 2 more variables: mean_idle_time <dbl>, median_idle_time <dbl>
##
## Grouped summary for df_ 3 (by department):
## # A tibble: 3 × 7
## department mean_productivity median_productivity mean_overtime median_overtime
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 "finishin… 0.740 0.772 1734. 1080
## 2 "finishin… 0.775 0.821 1873. 1440
## 3 "sweing" 0.698 0.750 6564. 6840
## # ℹ 2 more variables: mean_idle_time <dbl>, median_idle_time <dbl>
##
## Grouped summary for df_ 4 (by department):
## # A tibble: 3 × 7
## department mean_productivity median_productivity mean_overtime median_overtime
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 "finishin… 0.699 0.727 1955. 1080
## 2 "finishin… 0.811 0.828 1918. 1440
## 3 "sweing" 0.725 0.751 6737. 6840
## # ℹ 2 more variables: mean_idle_time <dbl>, median_idle_time <dbl>
##
## Grouped summary for df_ 5 (by department):
## # A tibble: 3 × 7
## department mean_productivity median_productivity mean_overtime median_overtime
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 "finishin… 0.702 0.749 1833. 1200
## 2 "finishin… 0.771 0.821 1706. 1440
## 3 "sweing" 0.715 0.750 6274. 6840
## # ℹ 2 more variables: mean_idle_time <dbl>, median_idle_time <dbl>
The grouped summaries show that productivity, overtime, and idle time behave differently across departments:
1-The productivity across the sub-samples is quite consistent, with df_1 having the highest average productivity at 0.7402 and df_3 having the lowest at 0.7239. The differences in productivity between these sub-samples are relatively small (ranging from 0.7239 to 0.7402), which suggests that the overall performance of the team or department remains stable across the sub-samples.
1-Overtime: The sewing department consistently works longer overtime (between 0 to and 25920 minutes) compared to the finishing department (around 0 to 10500 minutes). This large difference could mean that sewing teams are struggling with heavier workloads or delays.
3-In all sub-samples, the sewing department shows idle time increase ranging from 0 to 300 minutes, indicating inefficiencies. To improve, they should focus on better workflow management and task distribution. The finishing department, on the other hand, has no idle time, indicating smooth and efficient production. ### How Different Are They?
The sub-samples show some differences, especially when comparing productivity, overtime, and idle time across departments:
1-Productivity: There are small differences across sub-samples, but productivity is generally stable, with finishing having higher productivity compared to sewing.
2-Overtime: The sewing department consistently has much higher overtime (about 6,474 to 6,840 minutes) compared to finishing .However, the sewing department experienced a temporary increase in idle time (2.99 minutes in df_3), compared to much lower idle times in the other sub-samples
3-Idle Time:The finishing department shows almost no idle time in any sub-sample, indicating smooth production However, the sewing department experiences occasional increase, with df_3 showing an idle time of 2.99 minutes—an anomaly compared to other sub-samples where idle time is much lower.
1-Idle Time in Sewing (df_3): In df_3, the sewing department has an unusually high mean idle time of 2.99 minutes, compared to close to 0 in other sub-samples. This would be considered an anomaly in df_3 but not in sub-samples where idle time is consistently low.
2-Overtime The finishing department’s overtime stays consistently low across all sub-samples, showing well-managed workloads. However, the sewing department consistently has high overtime (between 6,564 and 6840 minutes), which could be due to extra workloads or delays in production that need further investigation.
1-High Finishing Productivity: The finishing department consistently shows high productivity across all sub-samples, indicating steady performance. Sewing
2-Overtime: The sewing department consistently works longer overtime in all sub-samples, suggesting a systemic workload or process-related issue.
Identify Consistent Patterns: The consistent high productivity of the finishing department suggests it is a reliable and efficient area of production.
Systemic Issues:The consistent overtime and occasional increases in idle time in the sewing department indicate possible delays or inefficiencies in the production process that require further investigation.
Random vs. Systemic Variations:While some variations, such as the high idle time in df_3, may be temporary, consistently high overtime across sub-samples points to a systemic workload issue that should be addressed.
# Combine all sub-samples into one data frame
combined_df <- do.call(rbind, lapply(1:num_samples, function(i) get(paste0("df_", i))))
str(combined_df)
## 'data.frame': 2990 obs. of 15 variables:
## $ date : chr "1/24/2015" "1/27/2015" "1/11/2015" "1/31/2015" ...
## $ quarter : chr "Quarter4" "Quarter4" "Quarter2" "Quarter5" ...
## $ department : chr "sweing" "finishing " "finishing " "finishing " ...
## $ day : chr "Saturday" "Tuesday" "Sunday" "Saturday" ...
## $ team : int 8 3 10 9 4 8 2 5 12 10 ...
## $ targeted_productivity: num 0.35 0.75 0.8 0.75 0.35 0.7 0.7 0.7 0.8 0.8 ...
## $ smv : num 15.09 3.94 3.94 3.94 4.3 ...
## $ wip : int 1448 NA NA NA NA NA 817 573 1026 1108 ...
## $ over_time : int 9360 1440 1440 240 3240 960 5520 6840 2880 6720 ...
## $ incentive : int 23 0 0 0 0 0 30 30 63 113 ...
## $ idle_time : num 0 0 0 0 0 0 0 0 0 0 ...
## $ idle_men : int 0 0 0 0 0 0 0 0 0 0 ...
## $ no_of_style_change : int 0 0 0 0 0 0 1 0 0 0 ...
## $ no_of_workers : num 52 12 8 2 18 8 45 57 34 56 ...
## $ actual_productivity : num 0.35 0.862 0.828 0.972 0.942 ...
# Calculate overall means and standard deviations
overall_mean_productivity <- mean(combined_df$actual_productivity, na.rm = TRUE)
overall_sd_productivity <- sd(combined_df$actual_productivity, na.rm = TRUE)
overall_mean_overtime <- mean(combined_df$over_time, na.rm = TRUE)
overall_sd_overtime <- sd(combined_df$over_time, na.rm = TRUE)
overall_mean_idle_time <- mean(combined_df$idle_time, na.rm = TRUE)
overall_sd_idle_time <- sd(combined_df$idle_time, na.rm = TRUE)
cat("\nOverall Summary Statistics:\n")
##
## Overall Summary Statistics:
cat("Mean Productivity: ", overall_mean_productivity, "\n")
## Mean Productivity: 0.7311311
cat("SD Productivity: ", overall_sd_productivity, "\n\n")
## SD Productivity: 0.1769174
cat("Mean Overtime: ", overall_mean_overtime, "\n")
## Mean Overtime: 4540.161
cat("SD Overtime: ", overall_sd_overtime, "\n\n")
## SD Overtime: 3350.28
cat("Mean Idle Time: ", overall_mean_idle_time, "\n")
## Mean Idle Time: 0.6525084
cat("SD Idle Time: ", overall_sd_idle_time, "\n")
## SD Idle Time: 12.05551
for (i in 1:num_samples) {
cat("\nZ-Scores for df_", i, ":\n")
sub_sample <- get(paste0("df_", i))
z_scores <- sub_sample %>%
group_by(department) %>%
summarize(
z_productivity = (mean(actual_productivity, na.rm = TRUE) - overall_mean_productivity) / overall_sd_productivity,
z_overtime = (mean(over_time, na.rm = TRUE) - overall_mean_overtime) / overall_sd_overtime,
z_idle_time = (mean(idle_time, na.rm = TRUE) - overall_mean_idle_time) / overall_sd_idle_time
)
print(z_scores)
}
##
## Z-Scores for df_ 1 :
## # A tibble: 3 × 4
## department z_productivity z_overtime z_idle_time
## <chr> <dbl> <dbl> <dbl>
## 1 "finishing" -0.0709 -0.840 -0.0541
## 2 "finishing " 0.399 -0.740 -0.0541
## 3 "sweing" -0.0156 0.577 0.0245
##
## Z-Scores for df_ 2 :
## # A tibble: 3 × 4
## department z_productivity z_overtime z_idle_time
## <chr> <dbl> <dbl> <dbl>
## 1 "finishing" -0.177 -0.870 -0.0541
## 2 "finishing " 0.195 -0.724 -0.0541
## 3 "sweing" 0.00663 0.570 0.0770
##
## Z-Scores for df_ 3 :
## # A tibble: 3 × 4
## department z_productivity z_overtime z_idle_time
## <chr> <dbl> <dbl> <dbl>
## 1 "finishing" 0.0501 -0.838 -0.0541
## 2 "finishing " 0.246 -0.796 -0.0541
## 3 "sweing" -0.186 0.604 0.194
##
## Z-Scores for df_ 4 :
## # A tibble: 3 × 4
## department z_productivity z_overtime z_idle_time
## <chr> <dbl> <dbl> <dbl>
## 1 "finishing" -0.183 -0.772 -0.0541
## 2 "finishing " 0.449 -0.783 -0.0541
## 3 "sweing" -0.0329 0.656 -0.0472
##
## Z-Scores for df_ 5 :
## # A tibble: 3 × 4
## department z_productivity z_overtime z_idle_time
## <chr> <dbl> <dbl> <dbl>
## 1 "finishing" -0.167 -0.808 -0.0541
## 2 "finishing " 0.228 -0.846 -0.0541
## 3 "sweing" -0.0898 0.518 -0.0472
After analyzing the summary statistics for each sub-sample (df_1 to df_5) and the overall data set, we calculated Z-scores to compare the performance of departments and detect any anomalies. The Z-scores highlight any values that deviate significantly from the overall mean, particularly for productivity, overtime, and idle time.
The results show that productivity in the finishing department only has minor variations across sub-samples, with no significant anomalies. The sewing department’s productivity remains stable and close to the overall mean, showing consistent performance.
However, overtime stands out as an area of concern. The sewing department consistently shows positive Z-scores between 0.5 and 0.6, meaning it regularly experiences higher-than-average overtime. This indicates a potential systemic issue, possibly due to workload or resource management challenges.
Idle time does not show any major concerns, as its Z-scores stay close to 0, suggesting no unexpected delays or downtime.
In conclusion, while productivity and idle time are well-managed, the consistently high overtime in the sewing department should be further investigated to understand its cause and implement solutions to improve overall efficiency.
identifying key factors that could be causing the high overtime in the sewing department by grouping the data and exploring relevant metrics like day, team, WIP, and quarter.
for (i in 1:num_samples) {
cat("\nAnalysis of Overtime Without Filtering (df_", i, "):\n")
overtime_analysis <- get(paste0("df_", i)) %>%
group_by(team, quarter, day) %>%
summarize(
mean_overtime = mean(over_time, na.rm = TRUE),
mean_productivity = mean(actual_productivity, na.rm = TRUE),
mean_idle_time = mean(idle_time, na.rm = TRUE)
)
print(overtime_analysis)
}
##
## Analysis of Overtime Without Filtering (df_ 1 ):
## `summarise()` has grouped output by 'team', 'quarter'. You can override using
## the `.groups` argument.
## # A tibble: 257 × 6
## # Groups: team, quarter [59]
## team quarter day mean_overtime mean_productivity mean_idle_time
## <int> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1 Quarter1 Monday 4680 0.652 0
## 2 1 Quarter1 Saturday 1040 0.892 0
## 3 1 Quarter1 Sunday 4950 0.850 0
## 4 1 Quarter1 Thursday 6154. 0.800 0
## 5 1 Quarter1 Tuesday 6960 0.801 0
## 6 1 Quarter1 Wednesday 4170 0.926 0
## 7 1 Quarter2 Monday 4110 0.823 0
## 8 1 Quarter2 Saturday 6030 0.798 0
## 9 1 Quarter2 Sunday 6960 0.850 0
## 10 1 Quarter2 Thursday 1440 0.948 0
## # ℹ 247 more rows
##
## Analysis of Overtime Without Filtering (df_ 2 ):
## `summarise()` has grouped output by 'team', 'quarter'. You can override using
## the `.groups` argument.
## # A tibble: 254 × 6
## # Groups: team, quarter [56]
## team quarter day mean_overtime mean_productivity mean_idle_time
## <int> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1 Quarter1 Monday 5480 0.702 0
## 2 1 Quarter1 Saturday 1080 0.767 0
## 3 1 Quarter1 Sunday 3210 0.725 0
## 4 1 Quarter1 Thursday 960 0.837 0
## 5 1 Quarter1 Tuesday 5050 0.833 0
## 6 1 Quarter1 Wednesday 4536 0.833 0
## 7 1 Quarter2 Monday 2520 0.928 0
## 8 1 Quarter2 Saturday 7272 0.879 0
## 9 1 Quarter2 Sunday 3060 0.888 0
## 10 1 Quarter2 Tuesday 480 0.891 0
## # ℹ 244 more rows
##
## Analysis of Overtime Without Filtering (df_ 3 ):
## `summarise()` has grouped output by 'team', 'quarter'. You can override using
## the `.groups` argument.
## # A tibble: 249 × 6
## # Groups: team, quarter [58]
## team quarter day mean_overtime mean_productivity mean_idle_time
## <int> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1 Quarter1 Monday 7080 0.800 0
## 2 1 Quarter1 Saturday 3750 0.758 0
## 3 1 Quarter1 Sunday 4950 0.850 0
## 4 1 Quarter1 Thursday 4020 0.883 0
## 5 1 Quarter1 Tuesday 8160 0.884 0
## 6 1 Quarter2 Monday 1296 0.880 0
## 7 1 Quarter2 Saturday 10620 0.800 0
## 8 1 Quarter2 Sunday 7245 0.873 0
## 9 1 Quarter2 Thursday 480 1.05 0
## 10 1 Quarter2 Tuesday 960 0.881 0
## # ℹ 239 more rows
##
## Analysis of Overtime Without Filtering (df_ 4 ):
## `summarise()` has grouped output by 'team', 'quarter'. You can override using
## the `.groups` argument.
## # A tibble: 266 × 6
## # Groups: team, quarter [60]
## team quarter day mean_overtime mean_productivity mean_idle_time
## <int> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1 Quarter1 Saturday 5550 0.804 0
## 2 1 Quarter1 Thursday 4170 0.923 0
## 3 1 Quarter1 Tuesday 5130 0.778 0
## 4 1 Quarter1 Wednesday 10620 0.851 0
## 5 1 Quarter2 Monday 720 0.875 0
## 6 1 Quarter2 Saturday 8352 0.920 0
## 7 1 Quarter2 Sunday 1080 0.892 0
## 8 1 Quarter2 Thursday 6030 0.758 0
## 9 1 Quarter2 Tuesday 3160 0.911 0
## 10 1 Quarter2 Wednesday 6030 0.846 0
## # ℹ 256 more rows
##
## Analysis of Overtime Without Filtering (df_ 5 ):
## `summarise()` has grouped output by 'team', 'quarter'. You can override using
## the `.groups` argument.
## # A tibble: 263 × 6
## # Groups: team, quarter [60]
## team quarter day mean_overtime mean_productivity mean_idle_time
## <int> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1 Quarter1 Monday 2820 0.521 0
## 2 1 Quarter1 Saturday 1200 0.870 0
## 3 1 Quarter1 Sunday 2124 0.846 0
## 4 1 Quarter1 Thursday 3930 0.782 0
## 5 1 Quarter1 Tuesday 3360 0.555 0
## 6 1 Quarter1 Wednesday 3930 0.854 0
## 7 1 Quarter2 Monday 5150 0.886 0
## 8 1 Quarter2 Sunday 960 0.891 0
## 9 1 Quarter2 Thursday 0 1.10 0
## 10 1 Quarter2 Tuesday 4020 0.868 0
## # ℹ 253 more rows
This analysis helps identify patterns or trends in overtime across different teams, days, or quarters, and can guide decisions on improving productivity or managing workloads. Further investigation may be needed to understand why certain teams or days show higher overtime and how to optimize resources better.
library(ggplot2)
# Bar plot of mean overtime by team
ggplot(overtime_analysis, aes(x = as.factor(team), y = mean_overtime)) +
geom_bar(stat = "identity", fill = "lightblue") +
labs(title = "Mean Overtime by Team", x = "Team", y = "Mean Overtime") +
theme_minimal()
The visualization shows that Team 4 has the highest average overtime compared to other teams, suggesting they may be experiencing a heavier workload or inefficiencies. Further investigation is needed to understand the causes and optimize their operations, possibly focusing on task dependencies, staffing, or scheduling improvements.
# Bar plot of mean overtime by quarter
ggplot(overtime_analysis, aes(x = quarter, y = mean_overtime)) +
geom_bar(stat = "identity", fill = "dark blue") +
labs(title = "Mean Overtime by Quarter", x = "Quarter", y = "Mean Overtime") +
theme_minimal()
The bar plot shows the mean overtime across different quarters. It highlights that Quarter 2 and Quarter 1 have the highest overtime, while Quarter 5 shows a significant drop in overtime hours. This suggests that overtime is most prevalent in the first half of the year, with a noticeable decrease in the last quarter. Further analysis is needed to explore the reasons behind these fluctuations in overtime across quarters.
# Bar plot of mean overtime by day
ggplot(overtime_analysis, aes(x = day, y = mean_overtime)) +
geom_bar(stat = "identity", fill = "lightcoral") +
labs(title = "Mean Overtime by Day", x = "Day", y = "Mean Overtime") +
theme_minimal()
The bar plot indicates that Saturday and Thursday have the highest mean overtime, which suggests that these days experience more workload or operational challenges. Focusing on these two days for investigation can help uncover the factors driving overtime. By analyzing team coordination, task dependencies, and resource allocation, strategies can be developed to manage workloads more effectively and reduce overtime on these high-overtime days.
# Investigate tasks and workload for high-overtime teams (4)
team_task_investigation <- combined_df %>%
filter(team %in% c(4)) %>%
group_by(team) %>%
summarize(
avg_overtime = mean(over_time, na.rm = TRUE),
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_productivity = mean(actual_productivity, na.rm = TRUE)
) %>%
arrange(desc(avg_overtime))
print(team_task_investigation)
## # A tibble: 1 × 4
## team avg_overtime avg_idle_time avg_productivity
## <int> <dbl> <dbl> <dbl>
## 1 4 5565. 1.03 0.780
Team 4 has significant overtime (5564.948) with moderate idle time (1.03) and similar productivity (0.7805). Despite the overtime, productivity remains consistent, suggesting potential issues with task distribution, resource allocation, or team coordination. Further investigation is needed to understand the cause of the overtime and explore solutions such as optimizing task distribution and improving scheduling to reduce overtime and increase efficiency.
overtime_summary <- combined_df %>%
filter(team %in% c(4)) %>%
group_by(team, day) %>%
summarize(
avg_overtime = mean(over_time, na.rm = TRUE),
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_productivity = mean(actual_productivity, na.rm = TRUE)
) %>%
arrange(desc(avg_overtime))
## `summarise()` has grouped output by 'team'. You can override using the
## `.groups` argument.
print(overtime_summary)
## # A tibble: 6 × 5
## # Groups: team [1]
## team day avg_overtime avg_idle_time avg_productivity
## <int> <chr> <dbl> <dbl> <dbl>
## 1 4 Saturday 6992. 0 0.801
## 2 4 Thursday 6720 0 0.764
## 3 4 Sunday 5948. 0 0.780
## 4 4 Monday 5164. 0 0.781
## 5 4 Tuesday 4360. 0 0.758
## 6 4 Wednesday 4268. 6 0.797
based on the investigation, it was found that Saturday and Thursday are the days with the highest overtime for Team 4, aligning with the previously identified trend for high overtime across teams. This further confirms that certain days of the week, like Thursday and Saturday, are more demanding for Team 4, contributing to the high overtime.
This investigation suggests that further analysis of task distribution, scheduling, and resource allocation on these specific days is necessary to understand the causes of high overtime and to identify strategies to reduce it while maintaining productivity.
workload_investigation <- combined_df %>%
filter(team %in% c(4)) %>%
group_by(team, department) %>%
summarize(
avg_overtime = mean(over_time, na.rm = TRUE),
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_productivity = mean(actual_productivity, na.rm = TRUE)
) %>%
arrange(desc(avg_overtime))
## `summarise()` has grouped output by 'team'. You can override using the
## `.groups` argument.
print(workload_investigation)
## # A tibble: 3 × 5
## # Groups: team [1]
## team department avg_overtime avg_idle_time avg_productivity
## <int> <chr> <dbl> <dbl> <dbl>
## 1 4 "sweing" 7684. 1.75 0.737
## 2 4 "finishing " 3570. 0 0.892
## 3 4 "finishing" 1335. 0 0.785
Team 4’s sewing department shows the highest average overtime (7,683.51) and some idle time (1.75), suggesting possible workload imbalances or inefficiencies. The finishing department has lower overtime and no idle time, with slightly higher productivity (0.7846 vs. 0.7376). Further analysis is needed to explore the causes of high overtime and idle time in the sewing department, such as task distribution and workflow inefficiencies. Addressing these could improve overall productivity and reduce overtime.
idle_time_investigation <- combined_df %>%
filter(team == 4, department == "sweing") %>%
group_by(team, day) %>%
summarize(
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_overtime = mean(over_time, na.rm = TRUE),
avg_productivity = mean(actual_productivity, na.rm = TRUE)
) %>%
arrange(desc(avg_idle_time))
## `summarise()` has grouped output by 'team'. You can override using the
## `.groups` argument.
print(idle_time_investigation)
## # A tibble: 6 × 5
## # Groups: team [1]
## team day avg_idle_time avg_overtime avg_productivity
## <int> <chr> <dbl> <dbl> <dbl>
## 1 4 Wednesday 10.3 5823. 0.756
## 2 4 Monday 0 7312. 0.727
## 3 4 Saturday 0 9787. 0.750
## 4 4 Sunday 0 7559. 0.723
## 5 4 Thursday 0 8287. 0.719
## 6 4 Tuesday 0 7281. 0.755
Wednesday has the highest idle time for Team 4, but it doesn’t directly correspond to the highest overtime because overtime is influenced by workload and task distribution. On Thursday and Saturday, the team likely had more demanding tasks, leading to higher overtime. Wednesday had idle time, but it didn’t require extra work hours, which shows that overtime isn’t always linked to idle time.
library(dplyr)
daily_workload_investigation <- combined_df %>%
filter(team %in% c(4)) %>%
group_by(day) %>%
summarize(
avg_overtime = mean(over_time, na.rm = TRUE),
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_productivity = mean(actual_productivity, na.rm = TRUE)
) %>%
arrange(desc(avg_overtime))
print(daily_workload_investigation)
## # A tibble: 6 × 4
## day avg_overtime avg_idle_time avg_productivity
## <chr> <dbl> <dbl> <dbl>
## 1 Saturday 6992. 0 0.801
## 2 Thursday 6720 0 0.764
## 3 Sunday 5948. 0 0.780
## 4 Monday 5164. 0 0.781
## 5 Tuesday 4360. 0 0.758
## 6 Wednesday 4268. 6 0.797
The analysis shows that Saturday and Thursday have the highest overtime for Team 4. This likely results from increased workload, higher idle time, and lower productivity. To reduce overtime, it’s important to focus on improving task distribution, reducing idle time, and boosting productivity, especially on these high-overtime days.
# Investigate Overtime by Task Dependencies and Team Coordination
task_dependency_investigation <- combined_df %>%
filter(team %in% c(4)) %>%
group_by(team, department) %>%
summarize(
avg_overtime = mean(over_time, na.rm = TRUE),
avg_productivity = mean(actual_productivity, na.rm = TRUE),
total_tasks = n()
) %>%
arrange(desc(avg_overtime))
## `summarise()` has grouped output by 'team'. You can override using the
## `.groups` argument.
print(task_dependency_investigation)
## # A tibble: 3 × 5
## # Groups: team [1]
## team department avg_overtime avg_productivity total_tasks
## <int> <chr> <dbl> <dbl> <int>
## 1 4 "sweing" 7684. 0.737 171
## 2 4 "finishing " 3570. 0.892 65
## 3 4 "finishing" 1335. 0.785 55
The analysis show that the increase in overtime for Team 4 may be due to the imbalance in task distribution between departments, particularly the Sewing department. The sewing department handled a significantly higher number of tasks (171) compared to the finishing department (55), which could be putting extra pressure on the sewing team, leading to higher overtime hours. Further investigation is needed to determine if other factors, such as task complexity, inefficiencies, or staffing issues in the sewing department, are contributing to the increase in overtime. Additionally, understanding the coordination between the two departments could help in optimizing workload distribution and reducing overtime.
# Investigate overtime by department and team
team_comparison_investigation <- combined_df %>%
group_by(department, team) %>%
summarize(
avg_no_of_workers = mean(no_of_workers, na.rm = TRUE),
avg_overtime = mean(over_time, na.rm = TRUE),
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_productivity = mean(actual_productivity, na.rm = TRUE)
) %>%
arrange(desc(avg_overtime))
## `summarise()` has grouped output by 'department'. You can override using the
## `.groups` argument.
print(team_comparison_investigation)
## # A tibble: 36 × 6
## # Groups: department [3]
## department team avg_no_of_workers avg_overtime avg_idle_time
## <chr> <int> <dbl> <dbl> <dbl>
## 1 sweing 4 57.4 7684. 1.75
## 2 sweing 5 56.8 7406. 0.732
## 3 sweing 3 56.8 7016. 0
## 4 sweing 1 57.5 7000. 0
## 5 sweing 9 55.8 6928. 0
## 6 sweing 8 56.6 6900. 2.11
## 7 sweing 7 57.5 6845. 8.62
## 8 sweing 2 55.9 6817. 0.210
## 9 sweing 10 54.1 6702. 0.397
## 10 sweing 11 54.3 5817. 0.156
## # ℹ 26 more rows
## # ℹ 1 more variable: avg_productivity <dbl>
Team 4 in the sewing department has high overtime and idle time, but its productivity is not the highest. This means that despite working longer hours, the team is not accomplishing more during that time. The high idle time indicates that workers are available but not always fully engaged, which reduces productivity. Since productivity is not higher, Team 4 has to work more overtime to compensate for the imbalance and meet production goals. This suggests that extra hours are being spent to make up for inefficiencies or delays, as seen in the higher overtime and idle time.
# Analyze dependencies by grouping tasks and idle times
task_dependency_investigation <- combined_df %>%
group_by(team, department) %>%
summarize(
total_tasks = n(),
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_overtime = mean(over_time, na.rm = TRUE)
) %>%
arrange(desc(avg_idle_time))
## `summarise()` has grouped output by 'team'. You can override using the
## `.groups` argument.
print(task_dependency_investigation)
## # A tibble: 36 × 5
## # Groups: team [12]
## team department total_tasks avg_idle_time avg_overtime
## <int> <chr> <int> <dbl> <dbl>
## 1 7 "sweing" 129 8.62 6845.
## 2 8 "sweing" 160 2.11 6900.
## 3 4 "sweing" 171 1.75 7684.
## 4 5 "sweing" 140 0.732 7406.
## 5 10 "sweing" 121 0.397 6702.
## 6 2 "sweing" 124 0.210 6817.
## 7 11 "sweing" 154 0.156 5817.
## 8 1 "finishing" 56 0 1611.
## 9 1 "finishing " 57 0 1985.
## 10 1 "sweing" 135 0 7000.
## # ℹ 26 more rows
The analysis shows that the higher overtime for Team 4 is driven by two main factors:
Higher Number of Tasks: Team 4 in the sewing department is handling a higher number of tasks (171) compared to other teams. This heavier workload can lead to increased overtime to meet production targets.
Higher Idle Time: Despite having many tasks, Team 4 experiences higher idle time (1.75 hours). This suggests that workers are available but not always fully utilized, creating inefficiencies that further require overtime to complete tasks.
Addressing these two issues—optimizing task distribution and reducing idle time—could help
# Analyze team coordination and resource allocation
coordination_allocation_analysis <- combined_df %>%
filter(team %in% c(4)) %>%
group_by(team) %>%
summarize(
avg_no_of_workers = mean(no_of_workers, na.rm = TRUE),
total_tasks = n(),
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_overtime = mean(over_time, na.rm = TRUE),
avg_actual_productivity = mean(actual_productivity, na.rm = TRUE)
) %>%
arrange(desc(avg_overtime))
print(coordination_allocation_analysis)
## # A tibble: 1 × 6
## team avg_no_of_workers total_tasks avg_idle_time avg_overtime
## <int> <dbl> <int> <dbl> <dbl>
## 1 4 39.1 291 1.03 5565.
## # ℹ 1 more variable: avg_actual_productivity <dbl>
The results show that Thursday and Saturday have the highest average overtime, indicating potential issues with workload distribution or task dependencies on these days. Further investigation is needed to identify the causes, such as unplanned workload increases, task dependencies, staffing shortages, or delays in coordination with other departments. Understanding these factors will help develop strategies for better scheduling, task redistribution, and resource planning to reduce overtime.
# Analyze dependencies by grouping tasks and idle times
task_dependency_investigation <- combined_df %>%
group_by(team, department) %>%
summarize(
total_tasks = n(),
avg_idle_time = mean(idle_time, na.rm = TRUE),
avg_overtime = mean(over_time, na.rm = TRUE)
) %>%
arrange(desc(avg_idle_time))
## `summarise()` has grouped output by 'team'. You can override using the
## `.groups` argument.
print(task_dependency_investigation)
## # A tibble: 36 × 5
## # Groups: team [12]
## team department total_tasks avg_idle_time avg_overtime
## <int> <chr> <int> <dbl> <dbl>
## 1 7 "sweing" 129 8.62 6845.
## 2 8 "sweing" 160 2.11 6900.
## 3 4 "sweing" 171 1.75 7684.
## 4 5 "sweing" 140 0.732 7406.
## 5 10 "sweing" 121 0.397 6702.
## 6 2 "sweing" 124 0.210 6817.
## 7 11 "sweing" 154 0.156 5817.
## 8 1 "finishing" 56 0 1611.
## 9 1 "finishing " 57 0 1985.
## 10 1 "sweing" 135 0 7000.
## # ℹ 26 more rows
The analysis shows that the higher overtime for Team 4 is driven by two main factors:
Higher Number of Tasks: Team 4 in the sewing department is handling a higher number of tasks (171) compared to other teams. This heavier workload can lead to increased overtime to meet production targets.
Higher Idle Time: Despite having many tasks, Team 4 experiences higher idle time (1.75 hours). This suggests that workers are available but not always fully utilized, creating inefficiencies that further require overtime to complete tasks.
Addressing these two issues—optimizing task distribution and reducing idle time—could help
Monte Carlo simulations could be a useful tool to model the uncertainties in the factors contributing to overtime, such as task distribution, idle time, and productivity. By using Monte Carlo simulations, we can simulate different scenarios and assess the potential impact of various adjustments on Team 4’s overtime.
library(dplyr)
library(ggplot2)
mean_overtime <- mean(combined_df$over_time, na.rm = TRUE)
mean_idle_time <- mean(combined_df$idle_time, na.rm = TRUE)
mean_productivity <- mean(combined_df$actual_productivity, na.rm = TRUE)
sd_overtime <- sd(combined_df$over_time, na.rm = TRUE)
sd_idle_time <- sd(combined_df$idle_time, na.rm = TRUE)
sd_productivity <- sd(combined_df$actual_productivity, na.rm = TRUE)
print(mean_overtime)
## [1] 4540.161
print(mean_idle_time)
## [1] 0.6525084
print(mean_productivity)
## [1] 0.7311311
print(sd_overtime)
## [1] 3350.28
print(sd_idle_time)
## [1] 12.05551
print(sd_productivity)
## [1] 0.1769174
# Define the number of simulations
num_simulations <- 10000
set.seed(123)
simulated_overtime <- replicate(num_simulations,
{
overtime_sim <- rnorm(1, mean_overtime, sd_overtime)
idle_time_sim <- rnorm(1, mean_idle_time, sd_idle_time)
productivity_sim <- rnorm(1, mean_productivity, sd_productivity)
# Create a simple model: overtime depends on idle time and productivity
overtime_sim + (idle_time_sim * 0.5) - (productivity_sim * 0.2) # Modify weights as needed
})
summary(simulated_overtime)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8355 2200 4479 4516 6840 17683
# Plot the simulation results
ggplot(data.frame(simulated_overtime), aes(x = simulated_overtime)) +
geom_histogram(binwidth = 1000, fill = "skyblue", color = "black", alpha = 0.7) +
labs(title = "Monte Carlo Simulation of Overtime for Team 4",
x = "Simulated Overtime (Minutes)", y = "Frequency") +
theme_minimal()
Team 4 shows high overtime with an average of 4540.16 minutes, occasionally reaching up to 17,683 minutes, indicating periods of heavy workload. While the idle time is generally low (average of 0.65 minutes), there are occasional spikes (up to 2.99 minutes), suggesting periods of inefficiency. Addressing workload distribution and idle time could help reduce overtime and improve productivity.