library(tidyverse)
library(lubridate)
library(ggplot2)
library(plotly)
print(c(mean(activity_normal_temp), mean(activity_high_temp)))
[1] 1.666667 1.388889
The means of the activity levels are fairly similar, but it’s still
worth conducting a hypothesis test of the differences between these two
means.
print(result)
Two Sample t-test
data: activity_level by temp_condition
t = -1.0791, df = 34, p-value = 0.2882
alternative hypothesis: true difference in means between group High and group Normal is not equal to 0
95 percent confidence interval:
-0.8009268 0.2453713
sample estimates:
mean in group High mean in group Normal
1.388889 1.666667
print(c(median(activity_normal_temp), median(activity_high_temp)))
[1] 2 1
Yep, definitely see different medians of these groups. Because the
distributions of activity level for each temperature group are skewed
(particularly the high-temp group skewed right), let’s try a median
hypothesis test, since medians are more robust to skewness than means
are.
Null hypothesis: the medians are the same Alternative hypothesis: the
medians are not the same.
print(pvalue)
[1] 0.09978488
Significant at p < 0.1 level! neat! The medians of these two
distributions are statistically significantly different at the p <
0.1 level, so we can be confident that were this study repeated 100x, 90
of the outcomes would show significant differences in the median
activity levels of these two groups. (90% confidence).
library(dplyr)
selected_data <- shrimp %>% select(temp, activity_level)
contingency_table <- table(selected_data$temp, selected_data$activity_level)
print(contingency_table)
0 1 2 3
High 0 12 5 1
Normal 2 5 8 3
# Perform chi-square test
chi_square_test_v1 <- chisq.test(contingency_table)
Warning: Chi-squared approximation may be incorrect
# View the results
print(chi_square_test_v1)
Pearson's Chi-squared test
data: contingency_table
X-squared = 6.5747, df = 3, p-value = 0.08676
Again, not significant at p<0.05 level, but YES significant at p
< 0.1 level. We might say that the difference in activity level shows
a “light trend that would require further investigation to confirm”.
Also sometimes phrased as “p < 0.1 as weak evidence or a trend”.
Your paper/poster should also clearly designate what behaviors you
termed as each activity level (like, activity level 0 = ????, activity
level 1 = ????, etc.)
Let’s try another chi-sq contingency table setup:
print(contingency_table_v2)
high low
High 6 12
Normal 11 7
# Perform chi-square test
chi_square_test_v2 <- chisq.test(contingency_table_v2)
# View the results
print(chi_square_test_v2)
Pearson's Chi-squared test with Yates' continuity correction
data: contingency_table_v2
X-squared = 1.7833, df = 1, p-value = 0.1817
Nope! That’s worse. Let’s try a different activity grouping - no
activity versus any activity at all.
print(contingency_table_v3)
active inactive
High 18 0
Normal 16 2
Seems like this is going to be the worst yet, but let’s proceed!
# Perform chi-square test
chi_square_test_v3 <- chisq.test(contingency_table_v3)
Warning: Chi-squared approximation may be incorrect
# View the results
print(chi_square_test_v3)
Pearson's Chi-squared test with Yates' continuity correction
data: contingency_table_v3
X-squared = 0.52941, df = 1, p-value = 0.4669
Woof! No good.
Okay, let’s try low activity (0-2) versus high activity (3):
print(contingency_table_v4)
high_activity low_activity
High 1 17
Normal 3 15
Seems not so good so far - like the groups have the same activity
levels, but anyway let’s try it just to make sure:
# Perform chi-square test
chi_square_test_v4 <- chisq.test(contingency_table_v4)
Warning: Chi-squared approximation may be incorrect
# View the results
print(chi_square_test_v4)
Pearson's Chi-squared test with Yates' continuity correction
data: contingency_table_v4
X-squared = 0.28125, df = 1, p-value = 0.5959
Nope! Bad! A very large p-value so this does not indicate a
significant difference between treatments.
So, in summary, our best result for chi-squared analysis of activity
level on temperature uses all the activity levels as distinct.
Okay, now let’s model activity level on all the recorded factors and
see what we can see:
LS0tCnRpdGxlOiAiTGVlIHNocmltcCBkYXRhIGFuYWx5c2lzIHYxIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkobHVicmlkYXRlKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkocGxvdGx5KQpgYGAKCmBgYHtyfQpzaHJpbXAgPC0gcmVhZC5jc3YoJ1NSU19zaHJpbXAuY3N2JykKcHJpbnQoaGVhZChzaHJpbXApKQpgYGAKCmBgYHtyfQpwMSA8LSBnZ3Bsb3Qoc2hyaW1wLCBhZXMoeD10ZW1wX2NvbmRpdGlvbiwgeT1hY3Rpdml0eV9sZXZlbCkpICsgZ2VvbV9ib3hwbG90KGZpbGwgPSAnc3RlZWxibHVlJykgKyB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDQ1LCB2anVzdCA9IDEsIGhqdXN0PTEpKSArIHlsaW0oMCw1KSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbj0ibm9uZSIpICsgbGFicyh0aXRsZSA9ICJGaWd1cmUgMTogRGlzdHJpYnV0aW9ucyBvZiBBY3Rpdml0eSBsZXZlbCBieSB0ZW1wZXJhdHVyZSBjb25kaXRpb24iLCB4ID0gIlRlbXBlcmF0dXJlIGNvbmRpdGlvbiIsIHkgPSAiQWN0aXZpdHkgbGV2ZWwiKQpnZ3Bsb3RseShwMSkKYGBgCgpgYGB7cn0KYWN0aXZpdHlfbm9ybWFsX3RlbXAgPC0gc2hyaW1wJGFjdGl2aXR5X2xldmVsW3NocmltcCR0ZW1wX2NvbmRpdGlvbiA9PSAiTm9ybWFsIl0KYWN0aXZpdHlfaGlnaF90ZW1wIDwtIHNocmltcCRhY3Rpdml0eV9sZXZlbFtzaHJpbXAkdGVtcF9jb25kaXRpb24gPT0gIkhpZ2giXQoKcHJpbnQoYyhtZWFuKGFjdGl2aXR5X25vcm1hbF90ZW1wKSwgbWVhbihhY3Rpdml0eV9oaWdoX3RlbXApKSkKYGBgCgpUaGUgbWVhbnMgb2YgdGhlIGFjdGl2aXR5IGxldmVscyBhcmUgZmFpcmx5IHNpbWlsYXIsIGJ1dCBpdCdzIHN0aWxsIHdvcnRoIGNvbmR1Y3RpbmcgYSBoeXBvdGhlc2lzIHRlc3Qgb2YgdGhlIGRpZmZlcmVuY2VzIGJldHdlZW4gdGhlc2UgdHdvIG1lYW5zLiAKCmBgYHtyfQpyZXN1bHQgPC0gdC50ZXN0KGFjdGl2aXR5X2xldmVsIH4gdGVtcF9jb25kaXRpb24sIGRhdGEgPSBzaHJpbXAsIHZhci5lcXVhbCA9IFRSVUUpCnByaW50KHJlc3VsdCkKYGBgCmBgYHtyfQpwcmludChjKG1lZGlhbihhY3Rpdml0eV9ub3JtYWxfdGVtcCksIG1lZGlhbihhY3Rpdml0eV9oaWdoX3RlbXApKSkKYGBgClllcCwgZGVmaW5pdGVseSBzZWUgZGlmZmVyZW50IG1lZGlhbnMgb2YgdGhlc2UgZ3JvdXBzLiBCZWNhdXNlIHRoZSBkaXN0cmlidXRpb25zIG9mIGFjdGl2aXR5IGxldmVsIGZvciBlYWNoIHRlbXBlcmF0dXJlIGdyb3VwIGFyZSBza2V3ZWQgKHBhcnRpY3VsYXJseSB0aGUgaGlnaC10ZW1wIGdyb3VwIHNrZXdlZCByaWdodCksIGxldCdzIHRyeSBhIG1lZGlhbiBoeXBvdGhlc2lzIHRlc3QsIHNpbmNlIG1lZGlhbnMgYXJlIG1vcmUgcm9idXN0IHRvIHNrZXduZXNzIHRoYW4gbWVhbnMgYXJlLiAKCk51bGwgaHlwb3RoZXNpczogIHRoZSBtZWRpYW5zIGFyZSB0aGUgc2FtZQpBbHRlcm5hdGl2ZSBoeXBvdGhlc2lzOiB0aGUgbWVkaWFucyBhcmUgbm90IHRoZSBzYW1lLiAKCmBgYHtyfQpsaWJyYXJ5KGNvaW4pCnNocmltcCR0ZW1wIDwtIGFzLmZhY3RvcihzaHJpbXAkdGVtcF9jb25kaXRpb24pCm1lZGlhbl90ZXN0X3Jlc3VsdCA8LSBtZWRpYW5fdGVzdChhY3Rpdml0eV9sZXZlbCB+IHRlbXAsIGRhdGEgPSBzaHJpbXApCnB2YWx1ZSA8LSBwdmFsdWUobWVkaWFuX3Rlc3RfcmVzdWx0KQpwcmludChwdmFsdWUpCmBgYAoKU2lnbmlmaWNhbnQgYXQgcCA8IDAuMSBsZXZlbCEgbmVhdCEgIFRoZSBtZWRpYW5zIG9mIHRoZXNlIHR3byBkaXN0cmlidXRpb25zIGFyZSBzdGF0aXN0aWNhbGx5IHNpZ25pZmljYW50bHkgZGlmZmVyZW50IGF0IHRoZSBwIDwgMC4xIGxldmVsLCBzbyB3ZSBjYW4gYmUgY29uZmlkZW50IHRoYXQgd2VyZSB0aGlzIHN0dWR5IHJlcGVhdGVkIDEwMHgsIDkwIG9mIHRoZSBvdXRjb21lcyB3b3VsZCBzaG93IHNpZ25pZmljYW50IGRpZmZlcmVuY2VzIGluIHRoZSBtZWRpYW4gYWN0aXZpdHkgbGV2ZWxzIG9mIHRoZXNlIHR3byBncm91cHMuICg5MCUgY29uZmlkZW5jZSkuIAoKYGBge3J9CmxpYnJhcnkoZHBseXIpCgpzZWxlY3RlZF9kYXRhIDwtIHNocmltcCAlPiUgc2VsZWN0KHRlbXAsIGFjdGl2aXR5X2xldmVsKQpjb250aW5nZW5jeV90YWJsZSA8LSB0YWJsZShzZWxlY3RlZF9kYXRhJHRlbXAsIHNlbGVjdGVkX2RhdGEkYWN0aXZpdHlfbGV2ZWwpCnByaW50KGNvbnRpbmdlbmN5X3RhYmxlKQpgYGAKYGBge3J9CiMgUGVyZm9ybSBjaGktc3F1YXJlIHRlc3QKY2hpX3NxdWFyZV90ZXN0X3YxIDwtIGNoaXNxLnRlc3QoY29udGluZ2VuY3lfdGFibGUpCgojIFZpZXcgdGhlIHJlc3VsdHMKcHJpbnQoY2hpX3NxdWFyZV90ZXN0X3YxKQpgYGAKQWdhaW4sIG5vdCBzaWduaWZpY2FudCBhdCBwPDAuMDUgbGV2ZWwsIGJ1dCBZRVMgc2lnbmlmaWNhbnQgYXQgcCA8IDAuMSBsZXZlbC4gV2UgbWlnaHQgc2F5IHRoYXQgdGhlIGRpZmZlcmVuY2UgaW4gYWN0aXZpdHkgbGV2ZWwgc2hvd3MgYSAibGlnaHQgdHJlbmQgdGhhdCB3b3VsZCByZXF1aXJlIGZ1cnRoZXIgaW52ZXN0aWdhdGlvbiB0byBjb25maXJtIi4gQWxzbyBzb21ldGltZXMgcGhyYXNlZCBhcyAicCA8IDAuMSBhcyB3ZWFrIGV2aWRlbmNlIG9yIGEgdHJlbmQiLiAKCllvdXIgcGFwZXIvcG9zdGVyIHNob3VsZCBhbHNvIGNsZWFybHkgZGVzaWduYXRlIHdoYXQgYmVoYXZpb3JzIHlvdSB0ZXJtZWQgYXMgZWFjaCBhY3Rpdml0eSBsZXZlbCAobGlrZSwgYWN0aXZpdHkgbGV2ZWwgMCA9ID8/Pz8sIGFjdGl2aXR5IGxldmVsIDEgPSA/Pz8/LCBldGMuKQoKTGV0J3MgdHJ5IGFub3RoZXIgY2hpLXNxIGNvbnRpbmdlbmN5IHRhYmxlIHNldHVwOgoKYGBge3J9CnNocmltcF9kYXRhX2dyb3VwZWQgIDwtIHNocmltcCAlPiUgIG11dGF0ZShhY3Rpdml0eV9ncm91cCA9IGNhc2Vfd2hlbiggYWN0aXZpdHlfbGV2ZWwgPD0gMSB+ICJsb3ciLCBhY3Rpdml0eV9sZXZlbCA+IDEgfiAiaGlnaCIpKQoKc2VsZWN0ZWRfZGF0YV92MiA8LSBzaHJpbXBfZGF0YV9ncm91cGVkICU+JSBzZWxlY3QodGVtcCwgYWN0aXZpdHlfZ3JvdXApCmNvbnRpbmdlbmN5X3RhYmxlX3YyIDwtIHRhYmxlKHNlbGVjdGVkX2RhdGFfdjIkdGVtcCwgc2VsZWN0ZWRfZGF0YV92MiRhY3Rpdml0eV9ncm91cCkKcHJpbnQoY29udGluZ2VuY3lfdGFibGVfdjIpCgpgYGAKYGBge3J9CiMgUGVyZm9ybSBjaGktc3F1YXJlIHRlc3QKY2hpX3NxdWFyZV90ZXN0X3YyIDwtIGNoaXNxLnRlc3QoY29udGluZ2VuY3lfdGFibGVfdjIpCgojIFZpZXcgdGhlIHJlc3VsdHMKcHJpbnQoY2hpX3NxdWFyZV90ZXN0X3YyKQpgYGAKCk5vcGUhICBUaGF0J3Mgd29yc2UuIExldCdzIHRyeSBhIGRpZmZlcmVudCBhY3Rpdml0eSBncm91cGluZyAtIG5vIGFjdGl2aXR5IHZlcnN1cyBhbnkgYWN0aXZpdHkgYXQgYWxsLiAKCmBgYHtyfQpzaHJpbXBfZGF0YV9yZWdyb3VwZWQgIDwtIHNocmltcCAlPiUgIG11dGF0ZShhY3Rpdml0eV9ncm91cCA9IGNhc2Vfd2hlbiggYWN0aXZpdHlfbGV2ZWwgPCAxIH4gImluYWN0aXZlIiwgYWN0aXZpdHlfbGV2ZWwgPj0gMSB+ICJhY3RpdmUiKSkKCnNlbGVjdGVkX2RhdGFfdjMgPC0gc2hyaW1wX2RhdGFfcmVncm91cGVkICU+JSBzZWxlY3QodGVtcCwgYWN0aXZpdHlfZ3JvdXApCmNvbnRpbmdlbmN5X3RhYmxlX3YzIDwtIHRhYmxlKHNlbGVjdGVkX2RhdGFfdjMkdGVtcCwgc2VsZWN0ZWRfZGF0YV92MyRhY3Rpdml0eV9ncm91cCkKcHJpbnQoY29udGluZ2VuY3lfdGFibGVfdjMpCmBgYApTZWVtcyBsaWtlIHRoaXMgaXMgZ29pbmcgdG8gYmUgdGhlIHdvcnN0IHlldCwgYnV0IGxldCdzIHByb2NlZWQhCgpgYGB7cn0KIyBQZXJmb3JtIGNoaS1zcXVhcmUgdGVzdApjaGlfc3F1YXJlX3Rlc3RfdjMgPC0gY2hpc3EudGVzdChjb250aW5nZW5jeV90YWJsZV92MykKCiMgVmlldyB0aGUgcmVzdWx0cwpwcmludChjaGlfc3F1YXJlX3Rlc3RfdjMpCmBgYApXb29mISBObyBnb29kLiAKCk9rYXksIGxldCdzIHRyeSBsb3cgYWN0aXZpdHkgKDAtMikgdmVyc3VzIGhpZ2ggYWN0aXZpdHkgKDMpOiAKCmBgYHtyfQpzaHJpbXBfZGF0YV95ZXRfYWdhaW4gPC0gc2hyaW1wICU+JSAgbXV0YXRlKGFjdGl2aXR5X2dyb3VwID0gY2FzZV93aGVuKCBhY3Rpdml0eV9sZXZlbCA8IDMgfiAibG93X2FjdGl2aXR5IiwgYWN0aXZpdHlfbGV2ZWwgPj0gMyB+ICJoaWdoX2FjdGl2aXR5IikpCgpzZWxlY3RlZF9kYXRhX3Y0IDwtIHNocmltcF9kYXRhX3lldF9hZ2FpbiAlPiUgc2VsZWN0KHRlbXAsIGFjdGl2aXR5X2dyb3VwKQpjb250aW5nZW5jeV90YWJsZV92NCA8LSB0YWJsZShzZWxlY3RlZF9kYXRhX3Y0JHRlbXAsIHNlbGVjdGVkX2RhdGFfdjQkYWN0aXZpdHlfZ3JvdXApCnByaW50KGNvbnRpbmdlbmN5X3RhYmxlX3Y0KQpgYGAKU2VlbXMgbm90IHNvIGdvb2Qgc28gZmFyIC0gbGlrZSB0aGUgZ3JvdXBzIGhhdmUgdGhlIHNhbWUgYWN0aXZpdHkgbGV2ZWxzLCBidXQgYW55d2F5IGxldCdzIHRyeSBpdCBqdXN0IHRvIG1ha2Ugc3VyZTogCgpgYGB7cn0KIyBQZXJmb3JtIGNoaS1zcXVhcmUgdGVzdApjaGlfc3F1YXJlX3Rlc3RfdjQgPC0gY2hpc3EudGVzdChjb250aW5nZW5jeV90YWJsZV92NCkKCiMgVmlldyB0aGUgcmVzdWx0cwpwcmludChjaGlfc3F1YXJlX3Rlc3RfdjQpCmBgYApOb3BlISBCYWQhIEEgdmVyeSBsYXJnZSBwLXZhbHVlIHNvIHRoaXMgZG9lcyBub3QgaW5kaWNhdGUgYSBzaWduaWZpY2FudCBkaWZmZXJlbmNlIGJldHdlZW4gdHJlYXRtZW50cy4gCgpTbywgaW4gc3VtbWFyeSwgb3VyIGJlc3QgcmVzdWx0IGZvciBjaGktc3F1YXJlZCBhbmFseXNpcyBvZiBhY3Rpdml0eSBsZXZlbCBvbiB0ZW1wZXJhdHVyZSB1c2VzIGFsbCB0aGUgYWN0aXZpdHkgbGV2ZWxzIGFzIGRpc3RpbmN0LiAKCgpPa2F5LCBub3cgbGV0J3MgbW9kZWwgYWN0aXZpdHkgbGV2ZWwgb24gYWxsIHRoZSByZWNvcmRlZCBmYWN0b3JzIGFuZCBzZWUgd2hhdCB3ZSBjYW4gc2VlOiAK