Airquality HW

Author

Maisha Subin

Load in the Library

Load library tidyverse in order to access dplyr and ggplot2

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Load the dataset into your global environment

Because airquality is a pre-built dataset, we can write it to our data directory to store it for later use.

data ("airquality")

Look at the structure of the data

In the global environment, click on the row with the airquality dataset and it will take you to a “spreadsheet” view of the data.

View the data using the “head” function

The function, head, will only disply the first 6 rows of the dataset. Notice in the global environment to the right, there are 153 observations (rows)

head(airquality)
  Ozone Solar.R Wind Temp Month Day
1    41     190  7.4   67     5   1
2    36     118  8.0   72     5   2
3    12     149 12.6   74     5   3
4    18     313 11.5   62     5   4
5    NA      NA 14.3   56     5   5
6    28      NA 14.9   66     5   6

Calculate Summary Statistics

If you want to look at specific statistics, here are some variations on coding. Here are 2 different ways to calculate “mean.”

mean(airquality$Temp)
[1] 77.88235
mean(airquality[,4]) 
[1] 77.88235

Calculate Median, Standard Deviation, and Variance

median(airquality$Temp)
[1] 79
sd(airquality$Wind)
[1] 3.523001
var(airquality$Wind)
[1] 12.41154

Rename the Months from number to names

Sometimes we prefer the months to be numerical, but here, we need them as the month names. There are MANY ways to do this. Here is one way to convert numbers 5 - 9 to May through September

airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"

Now look at the summary statistics of the dataset

See how Month has changed to have characters instead of numbers (it is now classified as “character” rather than “integer”)

summary(airquality$Month)
   Length     Class      Mode 
      153 character character 

Month is a categorical variable with different levels, called factors.

This is one way to reorder the Months so they do not default to alphabetical (you will see another way to reorder DIRECTLY in the chunk that creates the plot below in Plot #1

airquality$Month<-factor(airquality$Month, 
                         levels=c("May", "June","July", "August",
                                  "September"))

Plot 1: Create a histogram categorized by Month

Here is a first attempt at viewing a histogram of temperature by the months May through September. We will see that temperatures increase over these months. The median temperature appears to be about 75 degrees.

fill = Month colors the histogram by months between May - Sept.

scale_fill_discrete(name = “Month”…) provides the month names on the right side as a legend in chronological order. This is a different way to order than what was shown above.

labs allows us to add a title, axes labels, and a caption for the data source

p1 <- airquality |>
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity")+
  scale_fill_discrete(name = "Month", 
                      labels = c("May", "June","July", "August", "September")) +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Frequency of Temps",
       title = "Histogram of Monthly Temperatures from May - Sept, 1973",
       caption = "New York State Department of Conservation and the National Weather Service")  #provide the data source
p1
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Plot 2: Improve the histogram of Average Temperature by Month

Outline the bars in white using the color = “white” command

Use alpha to add some transparency (values between 0 and 1)

Change the binwidth

Add some transparency and white borders around the histogram bars.

p2 <- airquality |>
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September")) +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Frequency of Temps",
       title = "Histogram of Monthly Temperatures from May - Sept, 1973",
       caption = "New York State Department of Conservation and the National Weather Service")
p2

Plot 3: Create side-by-side boxplots categorized by Month

We can see that August has the highest temperatures based on the boxplot distribution.

p3 <- airquality |>
  ggplot(aes(Month, Temp, fill = Month)) + 
  labs(x = "Months from May through September", y = "Temperatures", 
       title = "Side-by-Side Boxplot of Monthly Temperatures",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot() +
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3

Plot 4: Side by Side Boxplots in Gray Scale

Make the same side-by-side boxplots, but in grey-scale

Use the scale_fill_grey command for the grey-scale legend, and again, use fill=Month in the aesthetics.

p4 <- airquality |>
ggplot(aes(Month, Temp, fill = Month)) + 
  labs(x = "Monthly Temperatures", y = "Temperatures", 
       title = "Side-by-Side Boxplot of Monthly Temperatures",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot()+
  scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4

Plot 5: My own plot

p5 <- airquality |>
  ggplot(aes(Month, Wind, fill = Month)) + 
  labs(x = "Months from May through September", y = "Wind Speed", 
       title = "Side-by-Side Boxplot of Wind Speed from May - September",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot() +
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
  p5

Write a brief essay here

The plot I decided to create is a wind speed Boxplot. This graph aims to capture the speed of wind between the months May to September. I kept the code for ggplot, labs, and scale_fill_discrete same, however I changed the variable from temp to wind. I prefer this boxplot instead of histogram, as histogram gave me months on the side panel, however in the above graph I was able to but the months on x axis. Having months on the x axis gives me more clarity. Overall in this scenarios and having chosen wind speed as my variable, boxplot represents the data the best.