Extra Data From API’s

Katie Quinn

library("wbstats")
meta <- wb_cache()
names(meta)
## [1] "countries"     "indicators"    "sources"       "topics"       
## [5] "regions"       "income_levels" "lending_types" "languages"
meta$topics
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Question 5.

getSymbols(c("NVDA", "TSLA"), source = "oanda")
## [1] "NVDA" "TSLA"
getSymbols(c("NVDA", "TSLA"), source = "yahoo")
## [1] "NVDA" "TSLA"
getSymbols(c("NVDA", "TSLA"), source = "FRED")
## [1] "NVDA" "TSLA"
tail(TSLA,10)
##            TSLA.Open TSLA.High TSLA.Low TSLA.Close TSLA.Volume TSLA.Adjusted
## 2025-01-24    414.45    418.88   405.78     406.58    56427100        406.58
## 2025-01-27    394.80    406.69   389.00     397.15    58125500        397.15
## 2025-01-28    396.91    400.59   386.50     398.09    48910700        398.09
## 2025-01-29    395.21    398.59   384.48     389.10    68033600        389.10
## 2025-01-30    410.78    412.50   384.41     400.28    98092900        400.28
## 2025-01-31    401.53    419.99   401.34     404.60    83568200        404.60
## 2025-02-03    386.68    389.17   374.36     383.68    93732100        383.68
## 2025-02-04    382.63    394.00   381.40     392.21    57072200        392.21
## 2025-02-05    387.51    388.39   375.53     378.17    57223300        378.17
## 2025-02-06    373.03    375.40   363.18     374.32    77918200        374.32
tail(NVDA,10)
##            NVDA.Open NVDA.High NVDA.Low NVDA.Close NVDA.Volume NVDA.Adjusted
## 2025-01-24    148.37    148.97   141.88     142.62   234657600        142.62
## 2025-01-27    124.80    128.40   116.70     118.42   818830900        118.42
## 2025-01-28    121.81    129.00   116.25     128.99   579666400        128.99
## 2025-01-29    126.50    126.89   120.05     123.70   467120600        123.70
## 2025-01-30    123.10    125.00   118.10     124.65   392925500        124.65
## 2025-01-31    123.78    127.85   119.19     120.07   390372900        120.07
## 2025-02-03    114.75    118.57   113.01     116.66   371235700        116.66
## 2025-02-04    116.96    121.20   116.70     118.65   256550000        118.65
## 2025-02-05    121.76    125.00   120.76     124.83   262230800        124.83
## 2025-02-06    127.42    128.77   125.21     128.68   251483600        128.68

Question 6.

getSymbols("MSFT", src="yahoo",from = "2024-10-01", to = "2025-02-01")
## [1] "MSFT"
head(MSFT)
##            MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
## 2024-10-01    428.45    428.48   418.81     420.69    19092900      419.8496
## 2024-10-02    422.58    422.82   416.71     417.13    16582300      416.2967
## 2024-10-03    417.63    419.55   414.29     416.54    13686400      415.7079
## 2024-10-04    418.24    419.75   414.97     416.06    19169700      415.2289
## 2024-10-07    416.00    417.11   409.00     409.54    20919800      408.7219
## 2024-10-08    410.90    415.66   408.17     414.71    19229300      413.8816

Question 7.

nrow(MSFT)
## [1] 84
pacman::p_load(httr, jsonlite)
library(pageviews)
library(pacman)

Question 9.

microsoft_views <- article_pageviews(
  project = "en.wikipedia",  # English Wikipedia
  article = "Microsoft",     # Wikipedia page title
  start = "2024100100",        # Start date in YYYYMMDD format
  end = "2025013123",          # End date in YYYYMMDD format
  user_type = "all"          # Includes all users (bots + humans)
)
nrow(microsoft_views)
## [1] 123
ncol(microsoft_views)
## [1] 8

Questions 10.

views30000 <- subset(microsoft_views, views > 30000)
head(views30000)

Question 11.

nrow(MSFT)
## [1] 84
nrow(microsoft_views)
## [1] 123
mergedData2 <- merge(MSFT, microsoft_views)
## Warning in merge.xts(MSFT, microsoft_views): NAs introduced by coercion