Persiapan Data
Kita akan memasukkan data csv ke dalam R
data<- read.csv("C:/Users/nyayu/Downloads/2023 Maret JABAR - SUSENAS KP BP 4.3.csv")
data1 <- read.csv("C:/Users/nyayu/Downloads/2023 Maret JABAR - SUSENAS KOR Rumah Tangga.csv")
head (data)
## X URUT R101 R102 R105 R301 FOOD NONFOOD EXPEND KAPITA
## 1 0 500001 32 7 2 4 2660400 2304033.3 4964433 1241108.3
## 2 1 500002 32 72 1 2 1108714 525166.7 1633881 816940.5
## 3 2 500003 32 6 2 3 2413886 1398333.3 3812219 1270739.7
## 4 3 500004 32 72 1 7 7770000 4313333.3 12083333 1726190.5
## 5 4 500005 32 77 1 3 4932557 46219750.0 51152307 17050769.0
## 6 5 500006 32 77 1 2 3272143 11400716.7 14672860 7336429.8
## KALORI_KAP PROTE_KAP LEMAK_KAP KARBO_KAP WERT WEIND PSU SSU
## 1 2365.173 67.13024 43.22239 352.9857 454.889101 1819.55641 12448 123442
## 2 2611.639 69.09189 30.11824 471.9977 172.376821 344.75364 31373 311039
## 3 2526.510 68.74262 58.51762 360.4562 241.578661 724.73598 12092 119908
## 4 3655.855 141.50262 119.46043 454.9395 93.673563 655.71494 31135 308689
## 5 2330.988 78.53335 53.14161 254.8461 122.217556 366.65267 33988 336798
## 6 2330.760 68.15351 60.91893 317.6763 7.638085 15.27617 34062 337531
## WI1 WI2
## 1 12435 123427
## 2 31360 311024
## 3 12079 119893
## 4 31122 308674
## 5 33975 336783
## 6 34049 337516
head (data1)
## X URUT PSU SSU WI1 WI2 R101 R102 R105 NUINFORT R1701 R1702 R1703
## 1 0 500001 12448 123442 12435 123427 32 7 2 2 5 5 5
## 2 1 500002 31373 311039 31360 311024 32 72 1 1 1 1 1
## 3 2 500003 12092 119908 12079 119893 32 6 2 2 5 5 5
## 4 3 500004 31135 308689 31122 308674 32 72 1 2 5 5 5
## 5 4 500005 33988 336798 33975 336783 32 77 1 1 5 5 5
## 6 5 500006 34062 337531 34049 337516 32 77 1 1 5 5 5
## R1704 R1705 R1706 R1707 R1708 NUINFORT1 R1801 R1802 R1803 R1804 R1805 R1806
## 1 5 5 5 5 5 2 1 1 5 110 5 2
## 2 5 5 5 5 5 1 1 1 1 35 5 3
## 3 5 5 5 5 5 2 1 1 1 96 5 2
## 4 5 5 5 5 5 2 2 1 1 300 5 2
## 5 5 5 5 5 5 1 1 3 0 84 1 2
## 6 5 5 5 5 5 1 1 1 1 300 1 2
## R1807 R1808 R1809A R1809B R1809C R1809D R1809E R1810A R1810B R1811A R1811B
## 1 1 4 2 1 1 98 7 4 2 2 998
## 2 1 6 1 1 4 0 0 4 2 1 0
## 3 1 2 1 1 1 20 7 5 1 1 0
## 4 1 2 1 1 1 98 7 2 0 2 10
## 5 1 2 1 1 1 98 7 1 0 1 0
## 6 1 2 1 1 1 98 7 1 0 1 0
## R1812 R1813A R1813B R1813C R1813D R1813E R1814A R1814B R1815A R1815B R1815C
## 1 5 5 5 5 5 5 4 2 1 1 1
## 2 5 5 5 5 5 5 4 2 1 1 1
## 3 5 5 5 5 5 5 5 1 1 1 5
## 4 5 5 5 5 5 5 5 2 1 1 1
## 5 5 5 5 5 5 5 4 2 1 1 1
## 6 5 5 5 5 5 5 3 0 1 1 1
## R1816 R1816B1 R1816B2 R1816B3 R1817 R1901A R1901B R1901C R1901D R1901E R1901F
## 1 1 1 0 0 4 1 5 5 5 5 5
## 2 1 1 0 0 4 5 5 5 5 5 5
## 3 1 1 1 0 4 5 5 5 5 5 5
## 4 1 2 0 0 4 1 5 5 5 5 5
## 5 1 1 0 0 2 5 5 5 5 5 5
## 6 1 3 0 0 3 5 5 5 5 5 5
## R1901G R1901H R1901I R1901J R2001A R2001B R2001C R2001D R2001E R2001F R2001G
## 1 5 5 5 5 5 1 5 5 5 1 5
## 2 5 5 5 5 5 5 5 5 5 5 5
## 3 5 5 5 5 5 1 5 5 5 5 5
## 4 5 5 5 5 5 1 5 5 5 5 5
## 5 5 5 5 5 1 1 5 5 5 1 5
## 6 5 5 5 5 1 1 1 1 1 1 1
## R2001H R2001I R2001J R2001K R2001L R2001M R2002_A R2002_B R2002_C R2002_D
## 1 5 5 5 5 5 1 A
## 2 5 5 5 5 5 1 A
## 3 1 5 5 5 5 1 A
## 4 1 5 5 5 5 1 A
## 5 1 1 1 1 1 5
## 6 1 1 5 1 1 1 A
## R2101A R2101B R2101C R2201A2 R2201A3 R2201B2 R2201B3 R2201C2 R2201C3 R2201D2
## 1 2 0 2 1 1 5 0 5 0 5
## 2 1 2 0 5 0 5 0 5 0 5
## 3 1 1 0 5 0 5 0 5 0 5
## 4 1 1 0 5 0 5 0 5 0 5
## 5 1 2 0 5 0 5 0 5 0 1
## 6 4 0 0 5 0 5 0 5 0 5
## R2201D3 R2201E2 R2201E3 R2201F2 R2201F3 R2202 R2203 R2204A R2204B R2204C_A
## 1 0 5 0 5 0 2 1 1 4 A
## 2 0 5 0 5 0 1 5 0 0
## 3 0 5 0 5 0 5 5 0 0
## 4 0 5 0 5 0 5 5 0 0
## 5 1 5 0 5 0 5 5 0 0
## 6 0 5 0 5 0 5 5 0 0
## R2204C_B R2204C_C R2204C_D R2204C_E R2204C_F R2204C_G R2205A R2206A R2207
## 1 NA 5 5 1
## 2 NA 5 5 1
## 3 NA 5 5 1
## 4 NA 5 5 5
## 5 NA 5 5 5
## 6 NA 5 5 5
## R2208A2 R2208B2 R2208BI2 R2208C2 R2208D2 R2208EIB2 R2208EIIB2 R2208EIT2
## 1 5 0 0 0 0 0 0 0
## 2 5 0 0 0 0 0 0 0
## 3 5 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## R2208EIIT2 R2208EK2 R2208ENU2 R2208EIL2 R2208EIIL2 R2208ES2 R2208F2 R2208G2
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## R2208H2 R2208A3 R2208B3 R2208BI3 R2208C3 R2208D3 R2208EIB3 R2208EIIB3
## 1 0 5 0 0 0 0 0 0
## 2 0 5 0 0 0 0 0 0
## 3 0 5 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## R2208EIT3 R2208EIIT3 R2208EK3 R2208ENU3 R2208EIL3 R2208EIIL3 R2208ES3 R2208F3
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## R2208G3 R2208H3 R2208A4 R2208B4 R2208BI4 R2208C4 R2208D4 R2208EIB4 R2208EIIB4
## 1 0 0 1 1 600000 3 1 200000 17
## 2 0 0 5 0 0 0 0 0 0
## 3 0 0 1 1 400000 2 1 240000 20
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## R2208EIT4 R2208EIIT4 R2208EK4 R2208ENU4 R2208EIL4 R2208EIIL4 R2208ES4
## 1 40000 16 DAGING AYAM 59 70000 2 KG
## 2 0 0 0 0 0
## 3 60000 36 KENTANG 13 100000 5 KG
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## R2208F4 R2208G4 R2208H4 R2208A5 R2208B5 R2208BI5 R2208C5 R2208D5 R2208EIB5
## 1 1 1 1 5 0 0 0 0 0
## 2 0 0 0 1 1 600000 3 1 110000
## 3 1 5 1 5 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## R2208EIIB5 R2208EIT5 R2208EIIT5 R2208EK5 R2208ENU5 R2208EIL5
## 1 0 0 0 0 0
## 2 10 26000 16 DAGING AYAM RAS 59 32000
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## R2208EIIL5 R2208ES5 R2208F5 R2208G5 R2208H5 R2209A R2209B R2209C R2210A
## 1 0 0 0 0 5 5 5 5
## 2 1 KG 1 1 1 1 5 5 5
## 3 0 0 0 0 1 5 5 5
## 4 0 0 0 0 5 5 5 5
## 5 0 0 0 0 5 5 5 1
## 6 0 0 0 0 5 5 5 5
## R2210B1 R2210B2 R2210B3 R2210B4 R2210B5 R2211A R2211A1 R2211A2 R2211A3
## 1 5 5 5 5 5 1 600000 0 0
## 2 5 5 5 5 5 5 0 0 0
## 3 5 5 5 5 5 5 0 0 0
## 4 5 5 5 5 5 5 0 0 0
## 5 5 5 5 5 5 5 0 0 0
## 6 5 5 5 5 5 5 0 0 0
## R2211A4 R2211A5 R2211B R2211B1 R301 R302 R303 R304 R305 FWT
## 1 0 0 5 0 4 0 4 3 1 454.889101
## 2 0 0 5 0 2 0 2 2 0 172.376821
## 3 0 0 5 0 3 0 3 3 1 241.578661
## 4 0 0 5 0 7 1 6 5 1 93.673563
## 5 0 0 5 0 3 0 3 3 1 122.217556
## 6 0 0 5 0 2 0 2 2 0 7.638085
Setelah itu, kita akan memilih data rumah tangga kabupaten Ciamis. Kode kabupaten Ciamis adalah 7.
Penjelasan Kode
R102 : Kode Kabupaten/kota
X : nomor urut rumah tangga
EXPEND : Rata-rata Pengeluaran Rumah Tangga Sebulan
R2001K : Apakah memiliki mobil?
5 : Tidak
1 : Ya
FOOD : Rata-rata Pengeluaran Makanan Rumah Tangga Sebulan
data2 <- subset(data, R102==7, select=c("X", "EXPEND"))
data3 <- subset(data1, R102==7, select=c("X","R2001K"))
data4 <- subset(data, R102==7, select=c("X","EXPEND","FOOD"))
data5 <- data.frame(Proporsi=(data4$FOOD/data4$EXPEND)*100)
head(data2)
## X EXPEND
## 1 0 4964433
## 42 41 9642083
## 43 42 2687315
## 50 49 9046560
## 79 78 1618025
## 80 79 17305305
head(data3)
## X R2001K
## 1 0 5
## 42 41 5
## 43 42 5
## 50 49 1
## 79 78 5
## 80 79 1
head(data5)
## Proporsi
## 1 53.58920
## 2 56.16006
## 3 73.33181
## 4 33.98135
## 5 67.06589
## 6 29.26543
Didapat data total pengeluaran rumah tangga dalam sebulan, data rumah tangga yang memiliki mobil atau tidak, dan data proporsi pengeluaran makanan rumah tangga dalam sebulan.
data6 <- merge(data2, data3, by= "X")
Data_RT <- cbind (data6, data5)
head(Data_RT)
## X EXPEND R2001K Proporsi
## 1 0 4964433 5 53.58920
## 2 41 9642083 5 56.16006
## 3 42 2687315 5 73.33181
## 4 49 9046560 1 33.98135
## 5 78 1618025 5 67.06589
## 6 79 17305305 1 29.26543
Jumlah data yang digunakan adalah 1037.
dim(Data_RT)
## [1] 1037 4
Pengeluaran Rumah Tangga Sebulan
total_pengeluaran <- sum(Data_RT$EXPEND)
total_pengeluaran
## [1] 3795008149
rataan_pengeluaran <- mean(Data_RT$EXPEND)
rataan_pengeluaran
## [1] 3659603
simpangan_baku_pengeluaran <- sd(Data_RT$EXPEND)
simpangan_baku_pengeluaran
## [1] 3000027
library(moments)
skewness_pengeluaran <- skewness(Data_RT$EXPEND)
skewness_pengeluaran
## [1] 3.179349
kurtosis_pengeluaran <- kurtosis(Data_RT$EXPEND)
kurtosis_pengeluaran
## [1] 18.49247
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.2
ggplot(Data_RT, aes(x = EXPEND)) +
geom_histogram(aes(y = ..density..), bins = 30, fill = "steelblue", alpha = 0.7) +
geom_density(color = "red", size = 0.5) +
labs(title = "Distribusi Pengeluaran Rumah Tangga", x = "Pengeluaran", y = "Density") +
theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Pengeluaran Makanan Rumah Tangga dalam Sebulan
Proporsi <- (sum(data4$FOOD)/sum(data4$EXPEND))*100
Proporsi
## [1] 56.39302
rataan_makanan <- mean(data4$FOOD)
rataan_makanan
## [1] 2063761
simpangan_baku_makanan <- sd(data4$FOOD)
simpangan_baku_makanan
## [1] 1331838
skewness(data4$FOOD)
## [1] 1.899847
kurtosis(data4$FOOD)
## [1] 9.046769
library(ggplot2)
ggplot(data4, aes(x = FOOD)) +
geom_histogram(aes(y = ..density..), bins = 30, fill = "steelblue", alpha = 0.7) +
geom_density(color = "red", size = 0.5) +
labs(title = "Distribusi Pengeluaran makanan rumah tangga", x = "Pengeluaran", y = "Density") +
theme_minimal()
Pengeluaran Rumah Tangga dalam Sebulan (RT Memiliki Mobil dan Tidak Memiliki Mobil)
Data_M <- subset(Data_RT,R2001K==1)
head (Data_M)
## X EXPEND R2001K Proporsi
## 4 49 9046560 1 33.98135
## 6 79 17305305 1 29.26543
## 8 137 11806036 1 48.18964
## 31 668 6260148 1 68.46986
## 44 1094 8911071 1 32.81953
## 45 1098 13380881 1 15.90863
total_pengeluaran_m <- sum(Data_M$EXPEND)
total_pengeluaran_m
## [1] 802795950
Data_TM <- subset(Data_RT, R2001K==5)
head (Data_TM)
## X EXPEND R2001K Proporsi
## 1 0 4964433 5 53.58920
## 2 41 9642083 5 56.16006
## 3 42 2687315 5 73.33181
## 5 78 1618025 5 67.06589
## 7 113 3148036 5 52.14953
## 9 177 1098571 5 73.14694
total_pengeluaran_tm <- sum(Data_TM$EXPEND)
total_pengeluaran_tm
## [1] 2992212199
rataan_pengeluaran_m <- mean(Data_M$EXPEND)
rataan_pengeluaran_m
## [1] 8276247
rataan_pengeluaran_tm <- mean(Data_TM$EXPEND)
rataan_pengeluaran_tm
## [1] 3183204
simpangan_baku_mobil<-sd(Data_M$EXPEND)
simpangan_baku_mobil
## [1] 5369504
simpangan_baku_tidakmobil<-sd(Data_TM$EXPEND)
simpangan_baku_tidakmobil
## [1] 2133858
skewness_pengeluaran_mobil <- skewness(Data_M$EXPEND)
kurtosis_pengeluaran_mobil <- kurtosis(Data_M$EXPEND)
skewness_pengeluaran_mobil
## [1] 1.338019
kurtosis_pengeluaran_mobil
## [1] 5.204244
ggplot(Data_M, aes(x = EXPEND)) +
geom_histogram(aes(y = ..density..), bins = 30, fill = "steelblue", alpha = 0.7) +
geom_density(color = "red", size = 0.5) +
labs(title = "Distribusi Pengeluaran Rumah Tangga punya mobil", x = "Pengeluaran", y = "Density") +
theme_minimal()
skewness_pengeluaran_tidakmobil <- skewness(Data_TM$EXPEND)
kurtosis_pengeluaran_tidakmobil <- kurtosis(Data_TM$EXPEND)
skewness_pengeluaran_tidakmobil
## [1] 3.009554
kurtosis_pengeluaran_tidakmobil
## [1] 21.72208
ggplot(Data_TM, aes(x = EXPEND)) +
geom_histogram(aes(y = ..density..), bins = 30, fill = "steelblue", alpha = 0.7) +
geom_density(color = "red", size = 0.5) +
labs(title = "Distribusi Pengeluaran Rumah Tangga yang tidak punya mobil", x = "Pengeluaran", y = "Density") +
theme_minimal()