hist(master$LOS)

hist(log(master$LOS))

# hist(
#   master$LOS[master$group == "MGH"],
#   main  = "Histogram of LOS (Group A)",
#   xlab  = "Length of Stay",
#   col   = "lightblue",
#   breaks = 30
# )
# 
# # 3. Histogram for group B
# hist(
#   master$LOS[master$group == "BWH"],
#   main  = "Histogram of LOS (Group B)",
#   xlab  = "Length of Stay",
#   col   = "lightgreen",
#   breaks = 30
# )

Table 1

all_var <- c("Gender","Age","Race_Group","LOS",
             "HTN","DM","CAD","Hgb","HCT_admit","HCT_discharge","Iron",                  
             "Ferritin","NT_proBNP",         
             "UF_rate",               
             "EDW","admit_Weight","HF_score","Dialysis_Vintage","Access_type",           
             "n_90","n_180")
cat_var <- c("Gender","Race_Group","HTN","DM","CAD")

num_var <- setdiff(all_var,cat_var)

master <- master %>% mutate_at(cat_var,as.factor)
non_num_var <- setdiff(num_var,"Age")


T1_before <- CreateTableOne(vars = all_var,strata ="group" ,includeNA = F,addOverall = TRUE,data = master, factorVars = cat_var)

###show SMD

print(T1_before,
      nonnormal=non_num_var,showAllLevels = T,missing = T,quote = FALSE, noSpaces = TRUE, printToggle = FALSE,
      contDigits = 3, 
      catDigits = 2,
      pDigits = 4)    


table1(~Gender+Age+Race_Group+LOS+HTN+DM+CAD+Hgb+HCT_admit+HCT_discharge+Iron+Ferritin+NT_proBNP+UF_rate+EDW+admit_Weight+HF_score+Dialysis_Vintage+Access_type+n_90+n_180|treated,
       render.continuous = c(.="Mean (SD)", .="Median [Q1,Q3]"),data=master)
0
(N=66)
1
(N=34)
Overall
(N=100)
Gender
Female 29 (43.9%) 13 (38.2%) 42 (42.0%)
Male 37 (56.1%) 21 (61.8%) 58 (58.0%)
Age
Mean (SD) 68.7 (14.5) 72.1 (12.4) 69.8 (13.9)
Median [Q1,Q3] 71.0 [58.3,81.8] 74.0 [64.5,79.8] 72.5 [59.0,81.3]
Race_Group
White 31 (47.0%) 20 (58.8%) 51 (51.0%)
Asian 1 (1.5%) 6 (17.6%) 7 (7.0%)
Black 20 (30.3%) 6 (17.6%) 26 (26.0%)
Other 14 (21.2%) 2 (5.9%) 16 (16.0%)
LOS
Mean (SD) 11.2 (10.2) 10.9 (5.83) 11.1 (8.92)
Median [Q1,Q3] 8.00 [4.00,13.8] 9.50 [7.00,14.5] 9.00 [5.00,14.3]
HTN
N 2 (3.0%) 1 (2.9%) 3 (3.0%)
Y 64 (97.0%) 33 (97.1%) 97 (97.0%)
DM
N 13 (19.7%) 6 (17.6%) 19 (19.0%)
Y 53 (80.3%) 28 (82.4%) 81 (81.0%)
CAD
N 2 (3.0%) 4 (11.8%) 6 (6.0%)
Y 64 (97.0%) 30 (88.2%) 94 (94.0%)
Hgb
Mean (SD) 10.1 (1.72) 10.1 (1.34) 10.1 (1.59)
Median [Q1,Q3] 9.80 [8.88,11.1] 10.2 [9.23,10.9] 9.85 [9.10,11.0]
HCT_admit
Mean (SD) 31.5 (5.41) 31.9 (4.31) 31.6 (5.05)
Median [Q1,Q3] 30.9 [27.6,35.5] 32.2 [29.2,34.6] 31.2 [28.1,35.1]
HCT_discharge
Mean (SD) 30.1 (4.67) 29.8 (4.16) 30.0 (4.49)
Median [Q1,Q3] 29.9 [26.5,33.5] 29.8 [26.9,32.1] 29.9 [26.8,32.8]
Iron
Mean (SD) 56.1 (29.5) 46.1 (22.7) 52.5 (27.6)
Median [Q1,Q3] 48.0 [34.0,74.0] 44.0 [31.0,54.0] 46.0 [33.0,70.0]
Missing 7 (10.6%) 1 (2.9%) 8 (8.0%)
Ferritin
Mean (SD) 1150 (1570) 1100 (951) 1130 (1370)
Median [Q1,Q3] 768 [277,1490] 852 [458,1490] 834 [291,1490]
Missing 8 (12.1%) 1 (2.9%) 9 (9.0%)
NT_proBNP
Mean (SD) 46100 (52600) 26700 (19700) 38800 (44100)
Median [Q1,Q3] 24600 [8020,70000] 25900 [8850,38100] 25400 [7900,48800]
Missing 21 (31.8%) 7 (20.6%) 28 (28.0%)
UF_rate
Mean (SD) 39.3 (245) 9.20 (4.73) 29.0 (199)
Median [Q1,Q3] 8.74 [7.10,11.6] 8.66 [6.35,10.6] 8.72 [6.44,10.9]
EDW
Mean (SD) 77.7 (23.4) 73.0 (26.5) 76.1 (24.5)
Median [Q1,Q3] 74.2 [63.0,86.9] 67.7 [56.5,80.0] 72.0 [60.0,85.6]
admit_Weight
Mean (SD) 80.7 (24.4) 76.1 (26.6) 79.1 (25.1)
Median [Q1,Q3] 76.1 [65.1,88.6] 71.0 [59.9,82.3] 74.9 [62.9,87.4]
HF_score
1 19 (28.8%) 10 (29.4%) 29 (29.0%)
2 11 (16.7%) 8 (23.5%) 19 (19.0%)
3 36 (54.5%) 16 (47.1%) 52 (52.0%)
Dialysis_Vintage
Mean (SD) 2.23 (2.06) 2.26 (2.02) 2.24 (2.04)
Median [Q1,Q3] 1.00 [1.00,3.00] 1.00 [1.00,3.00] 1.00 [1.00,3.00]
Access_type
AVF 25 (37.9%) 15 (44.1%) 40 (40.0%)
TDC 41 (62.1%) 15 (44.1%) 56 (56.0%)
AVG 0 (0%) 4 (11.8%) 4 (4.0%)
n_90
Mean (SD) 1.18 (0.975) 0.882 (1.01) 1.08 (0.992)
Median [Q1,Q3] 1.00 [0,2.00] 1.00 [0,1.75] 1.00 [0,2.00]
n_180
Mean (SD) 1.71 (1.43) 1.41 (1.28) 1.61 (1.38)
Median [Q1,Q3] 1.50 [1.00,3.00] 1.00 [0,2.75] 1.00 [0,3.00]

Balance check before

library("cobalt")

bal.tab(master %>% select("Age","Race_Group" ,"Gender","CAD","HTN","DM","HF_score","Dialysis_Vintage"), treat = master$treated,disp=c("means","sds"))
## Balance Measures
##                     Type  M.0.Un SD.0.Un  M.1.Un SD.1.Un Diff.Un
## Age              Contin. 68.6667 14.5119 72.0588 12.3973  0.2513
## Race_Group_White  Binary  0.4697       .  0.5882       .  0.1185
## Race_Group_Asian  Binary  0.0152       .  0.1765       .  0.1613
## Race_Group_Black  Binary  0.3030       .  0.1765       . -0.1266
## Race_Group_Other  Binary  0.2121       .  0.0588       . -0.1533
## Gender_Male       Binary  0.5606       .  0.6176       .  0.0570
## CAD_Y             Binary  0.9697       .  0.8824       . -0.0873
## HTN_Y             Binary  0.9697       .  0.9706       .  0.0009
## DM_Y              Binary  0.8030       .  0.8235       .  0.0205
## HF_score_1        Binary  0.2879       .  0.2941       .  0.0062
## HF_score_2        Binary  0.1667       .  0.2353       .  0.0686
## HF_score_3        Binary  0.5455       .  0.4706       . -0.0749
## Dialysis_Vintage Contin.  2.2273  2.0591  2.2647  2.0197  0.0184
## 
## Sample sizes
##     Control Treated
## All      66      34

Balance check after

bal.tab(master %>% select("Age","Race_Group" ,"Gender","CAD","HTN","DM","HF_score","Dialysis_Vintage"), treat = master$treated, weights = master$weight.ATE,disp=c("means","sds"))
## Balance Measures
##                     Type M.0.Adj SD.0.Adj M.1.Adj SD.1.Adj Diff.Adj
## Age              Contin. 69.8706  13.9749 71.1316  14.3433   0.0934
## Race_Group_White  Binary  0.5262        .  0.5053        .  -0.0209
## Race_Group_Asian  Binary  0.0309        .  0.0986        .   0.0677
## Race_Group_Black  Binary  0.2739        .  0.2919        .   0.0180
## Race_Group_Other  Binary  0.1690        .  0.1041        .  -0.0648
## Gender_Male       Binary  0.5775        .  0.5568        .  -0.0207
## CAD_Y             Binary  0.9705        .  0.9119        .  -0.0585
## HTN_Y             Binary  0.9735        .  0.9840        .   0.0105
## DM_Y              Binary  0.8006        .  0.8505        .   0.0500
## HF_score_1        Binary  0.2862        .  0.2621        .  -0.0241
## HF_score_2        Binary  0.1898        .  0.2271        .   0.0373
## HF_score_3        Binary  0.5239        .  0.5107        .  -0.0132
## Dialysis_Vintage Contin.  2.1915   1.9458  2.3499   2.0210   0.0777
## 
## Effective sample sizes
##            Control Treated
## Unadjusted   66.     34.  
## Adjusted     61.87   26.31

Univariate linear regression outcome los

outcome los
Characteristic N Beta 95% CI1 p-value
group 186


    BWH

    MGH
-1.6 -5.4, 2.2 0.413
Age 186 -0.06 -0.20, 0.07 0.381
Gender 186


    Female

    Male
-0.69 -4.5, 3.1 0.724
Race_Group 186


    White

    Asian
-6.0 -14, 1.7 0.132
    Black
-4.0 -8.3, 0.31 0.072
    Other
-6.7 -12, -1.1 0.020
HTN 186


    N

    Y
2.0 -11, 15 0.762
DM 186


    N

    Y
3.4 -1.6, 8.3 0.183
CAD 186


    N

    Y
-1.8 -9.9, 6.3 0.664
Dialysis_Vintage 186 -0.50 -1.5, 0.47 0.313
HF_score 186


    1

    2
4.7 -0.75, 10 0.095
    3
-0.08 -4.5, 4.3 0.973
weight.ATE 186 -0.62 -1.8, 0.55 0.300
1 CI = Confidence Interval

Multivariate linear regression los: age gender race

outcome los
Characteristic N Beta 95% CI1 p-value
group



    BWH 96
    MGH 90 -1.5 -5.3, 2.2 0.416
Age 186 -0.12 -0.26, 0.02 0.099
Gender



    Female 80
    Male 106 -1.8 -5.7, 2.0 0.348
Race_Group



    White 96
    Asian 11 -5.1 -13, 2.6 0.199
    Black 52 -5.6 -10, -0.95 0.020
    Other 25 -8.0 -14, -2.3 0.007
1 CI = Confidence Interval

Multivariate linear regression los : group+ Age+Gender+Race_Group+HTN+DM+CAD+Dialysis_Vintage+HF_score

outcome los
Characteristic N Beta 95% CI1 p-value
group



    BWH 96
    MGH 90 -2.0 -5.8, 1.7 0.283
Age 186 -0.12 -0.26, 0.02 0.103
Gender



    Female 80
    Male 106 -3.3 -7.3, 0.82 0.121
Race_Group



    White 96
    Asian 11 -3.5 -11, 4.4 0.383
    Black 52 -5.3 -10, -0.45 0.035
    Other 25 -9.2 -15, -3.4 0.003
HTN



    N 4
    Y 182 -1.5 -16, 13 0.841
DM



    N 32
    Y 154 4.3 -0.89, 9.5 0.108
CAD



    N 10
    Y 176 1.1 -7.9, 10 0.810
Dialysis_Vintage 186 -0.61 -1.6, 0.39 0.234
HF_score



    1 51
    2 38 6.4 0.90, 12 0.025
    3 96 -0.01 -4.6, 4.6 0.998
1 CI = Confidence Interval

90 days poisson regression group

glm(n_90 ~ group,
                    family  = poisson(link = "log"),
                    weights = weight.ATE,
                    data    = master) %>% tbl_regression(exponentiate = T,
 pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>%
  add_n(location = "level")
Characteristic N IRR1 95% CI1 p-value
group



    BWH 96
    MGH 90 0.71 0.52, 0.95 0.025
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

90 days poisson regression group Age Gender Race_Group

glm(n_90 ~ group+ Age+Gender+Race_Group,
                    family  = poisson(link = "log"),
                    weights = weight.ATE,
                    data    = master) %>% tbl_regression(exponentiate = T,
 pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>%
  add_n(location = "level")
Characteristic N IRR1 95% CI1 p-value
group



    BWH 96
    MGH 90 0.70 0.51, 0.95 0.022
Age 186 1.00 0.99, 1.02 0.538
Gender



    Female 80
    Male 106 0.92 0.68, 1.25 0.601
Race_Group



    White 96
    Asian 11 1.48 0.82, 2.50 0.169
    Black 52 0.82 0.55, 1.21 0.331
    Other 25 1.31 0.86, 1.97 0.196
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

90 days poisson regression: group+ Age+Gender+Race_Group+HTN+DM+CAD+Dialysis_Vintage+HF_score

glm(n_90 ~ group+ Age+Gender+Race_Group+HTN+DM+CAD+Dialysis_Vintage+HF_score,
                    family  = poisson(link = "log"),
                    weights = weight.ATE,
                    data    = master) %>% tbl_regression(exponentiate = T,
 pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>%
  add_n(location = "level")
Characteristic N IRR1 95% CI1 p-value
group



    BWH 96
    MGH 90 0.68 0.49, 0.93 0.017
Age 186 1.00 0.99, 1.01 0.769
Gender



    Female 80
    Male 106 0.71 0.50, 0.99 0.045
Race_Group



    White 96
    Asian 11 1.91 1.02, 3.38 0.034
    Black 52 0.96 0.63, 1.45 0.860
    Other 25 1.59 1.01, 2.44 0.039
HTN



    N 4
    Y 182 0.96 0.26, 5.27 0.959
DM



    N 32
    Y 154 1.87 1.19, 3.07 0.009
CAD



    N 10
    Y 176 1.12 0.51, 2.89 0.791
Dialysis_Vintage 186 0.86 0.77, 0.95 0.005
HF_score



    1 51
    2 38 1.24 0.76, 2.01 0.382
    3 96 1.59 1.08, 2.40 0.022
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

180 days poisson regression group

glm(n_180 ~ group,
                    family  = poisson(link = "log"),
                    weights = weight.ATE,
                    data    = master) %>% tbl_regression(exponentiate = T,
 pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>%
  add_n(location = "level")
Characteristic N IRR1 95% CI1 p-value
group



    BWH 96
    MGH 90 0.90 0.71, 1.13 0.355
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

180 days poisson regression: Age Gender Race_Group

glm(n_180 ~ group+ Age+Gender+Race_Group,
                    family  = poisson(link = "log"),
                    weights = weight.ATE,
                    data    = master) %>% tbl_regression(exponentiate = T,
 pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>%
  add_n(location = "level")
Characteristic N IRR1 95% CI1 p-value
group



    BWH 96
    MGH 90 0.92 0.72, 1.16 0.466
Age 186 1.00 0.99, 1.01 0.868
Gender



    Female 80
    Male 106 0.97 0.76, 1.24 0.817
Race_Group



    White 96
    Asian 11 1.16 0.69, 1.86 0.550
    Black 52 1.12 0.82, 1.51 0.478
    Other 25 1.62 1.16, 2.22 0.004
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

180 days poisson regression: group+ Age+Gender+Race_Group+HTN+DM+CAD+Dialysis_Vintage+HF_score

glm(n_180 ~ group+ Age+Gender+Race_Group+HTN+DM+CAD+Dialysis_Vintage+HF_score,
                    family  = poisson(link = "log"),
                    weights = weight.ATE,
                    data    = master) %>% tbl_regression(exponentiate = T,
 pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
  bold_labels()%>%
  add_n(location = "level")
Characteristic N IRR1 95% CI1 p-value
group



    BWH 96
    MGH 90 0.93 0.73, 1.19 0.585
Age 186 1.00 0.99, 1.01 0.738
Gender



    Female 80
    Male 106 0.80 0.61, 1.06 0.126
Race_Group



    White 96
    Asian 11 1.41 0.84, 2.35 0.195
    Black 52 1.21 0.89, 1.65 0.232
    Other 25 1.66 1.18, 2.33 0.004
HTN



    N 4
    Y 182 6,273,484 0.00, Inf 0.988
DM



    N 32
    Y 154 1.45 1.01, 2.08 0.045
CAD



    N 10
    Y 176 2.63 0.98, 7.05 0.054
Dialysis_Vintage 186 0.86 0.79, 0.93 <0.001
HF_score



    1 51
    2 38 0.99 0.68, 1.43 0.944
    3 96 1.15 0.85, 1.55 0.371
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

Univariate coxph time_1st_readmission

Characteristic N HR1 95% CI1 p-value
group 186


    BWH

    MGH
0.75 0.45, 1.27 0.291
Age 186 1.01 0.99, 1.03 0.507
Gender 186


    Female

    Male
0.83 0.50, 1.40 0.490
Race_Group 186


    White

    Asian
1.21 0.41, 3.56 0.731
    Black
0.96 0.46, 2.02 0.922
    Other
1.69 0.91, 3.14 0.094
HTN 186


    N

    Y
3.62 0.33, 39.2 0.290
DM 186


    N

    Y
1.28 0.62, 2.64 0.499
CAD 186


    N

    Y
1.83 0.72, 4.66 0.205
Dialysis_Vintage 186 0.84 0.68, 1.05 0.121
HF_score 186


    1

    2
1.77 1.00, 3.14 0.051
    3
1.39 0.74, 2.59 0.307
weight.ATE 186 0.91 0.67, 1.25 0.562
1 HR = Hazard Ratio, CI = Confidence Interval

coxph time_1st_readmission_180 Multivariate linear regression los: age gender race

Characteristic HR1 95% CI1 p-value
group


    BWH
    MGH 0.74 0.43, 1.27 0.271
Age 1.01 0.99, 1.03 0.462
Gender


    Female
    Male 0.86 0.52, 1.42 0.555
Race_Group


    White
    Asian 1.43 0.44, 4.60 0.553
    Black 1.08 0.52, 2.23 0.844
    Other 1.76 0.92, 3.38 0.089
1 HR = Hazard Ratio, CI = Confidence Interval

coxph time_1st_readmission_180 Multivariate linear regression:group+ Age+Gender+Race_Group+HTN+DM+CAD+Dialysis_Vintage+HF_score

Characteristic HR1 95% CI1 p-value
group


    BWH
    MGH 0.75 0.45, 1.23 0.253
Age 1.01 0.99, 1.03 0.302
Gender


    Female
    Male 0.58 0.35, 0.98 0.041
Race_Group


    White
    Asian 2.19 0.66, 7.32 0.201
    Black 1.79 1.06, 3.05 0.031
    Other 2.18 1.12, 4.23 0.021
HTN


    N
    Y 3.48 0.13, 92.2 0.455
DM


    N
    Y 2.01 0.83, 4.89 0.124
CAD


    N
    Y 1.18 0.50, 2.76 0.702
Dialysis_Vintage 0.77 0.60, 0.97 0.028
HF_score


    1
    2 2.38 1.31, 4.32 0.004
    3 2.00 1.05, 3.80 0.035
1 HR = Hazard Ratio, CI = Confidence Interval

Univariate linear regression outcome n_90

outcome n_90
Characteristic N Beta 95% CI1 p-value
group 186


    BWH

    MGH
-0.32 -0.69, 0.04 0.086
Age 186 0.00 -0.01, 0.02 0.553
Gender 186


    Female

    Male
-0.02 -0.39, 0.36 0.924
Race_Group 186


    White

    Asian
0.31 -0.46, 1.1 0.432
    Black
-0.19 -0.62, 0.24 0.393
    Other
0.32 -0.24, 0.88 0.264
HTN 186


    N

    Y
0.35 -0.94, 1.6 0.596
DM 186


    N

    Y
0.24 -0.25, 0.72 0.343
CAD 186


    N

    Y
0.28 -0.52, 1.1 0.498
Dialysis_Vintage 186 -0.10 -0.19, 0.00 0.047
HF_score 186


    1

    2
0.03 -0.51, 0.57 0.911
    3
0.27 -0.17, 0.70 0.236
weight.ATE 186 -0.14 -0.25, -0.03 0.015
1 CI = Confidence Interval

Multivariate linear regression n_90: age gender race

outcome n_90
Characteristic N Beta 95% CI1 p-value
group



    BWH 96
    MGH 90 -0.33 -0.71, 0.04 0.083
Age 186 0.00 -0.01, 0.02 0.653
Gender



    Female 80
    Male 106 -0.07 -0.46, 0.31 0.706
Race_Group



    White 96
    Asian 11 0.41 -0.38, 1.2 0.313
    Black 52 -0.17 -0.64, 0.30 0.474
    Other 25 0.30 -0.27, 0.87 0.308
1 CI = Confidence Interval

Multivariate linear regression n_90 : group+ Age+Gender+Race_Group+HTN+DM+CAD+Dialysis_Vintage+HF_score

outcome n_90
Characteristic N Beta 95% CI1 p-value
group



    BWH 96
    MGH 90 -0.35 -0.72, 0.03 0.074
Age 186 0.00 -0.01, 0.02 0.871
Gender



    Female 80
    Male 106 -0.28 -0.70, 0.13 0.180
Race_Group



    White 96
    Asian 11 0.58 -0.22, 1.4 0.159
    Black 52 -0.04 -0.52, 0.45 0.882
    Other 25 0.45 -0.14, 1.0 0.140
HTN



    N 4
    Y 182 0.06 -1.4, 1.5 0.938
DM



    N 32
    Y 154 0.52 -0.01, 1.0 0.057
CAD



    N 10
    Y 176 0.08 -0.83, 0.99 0.868
Dialysis_Vintage 186 -0.11 -0.21, -0.01 0.038
HF_score



    1 51
    2 38 0.15 -0.41, 0.71 0.600
    3 96 0.41 -0.06, 0.88 0.088
1 CI = Confidence Interval

Univariate linear regression outcome n_180

outcome n_180
Characteristic N Beta 95% CI1 p-value
group 186


    BWH

    MGH
-0.17 -0.69, 0.35 0.532
Age 186 0.00 -0.02, 0.02 0.801
Gender 186


    Female

    Male
-0.08 -0.61, 0.44 0.755
Race_Group 186


    White

    Asian
0.18 -0.90, 1.3 0.745
    Black
0.15 -0.45, 0.76 0.620
    Other
0.85 0.07, 1.6 0.036
HTN 186


    N

    Y
1.6 -0.23, 3.3 0.090
DM 186


    N

    Y
0.31 -0.37, 1.0 0.371
CAD 186


    N

    Y
1.2 0.09, 2.3 0.036
Dialysis_Vintage 186 -0.16 -0.29, -0.03 0.018
HF_score 186


    1

    2
-0.29 -1.1, 0.47 0.457
    3
-0.13 -0.74, 0.49 0.692
weight.ATE 186 -0.07 -0.23, 0.09 0.386
1 CI = Confidence Interval

Multivariate linear regression n_180: age gender race

outcome n_180
Characteristic N Beta 95% CI1 p-value
group



    BWH 96
    MGH 90 -0.13 -0.66, 0.40 0.625
Age 186 0.00 -0.02, 0.02 0.919
Gender



    Female 80
    Male 106 -0.05 -0.59, 0.50 0.872
Race_Group



    White 96
    Asian 11 0.22 -0.89, 1.3 0.700
    Black 52 0.15 -0.51, 0.81 0.649
    Other 25 0.83 0.02, 1.6 0.047
1 CI = Confidence Interval

Multivariate linear regression n_180 : group+ Age+Gender+Race_Group+HTN+DM+CAD+Dialysis_Vintage+HF_score

outcome n_180
Characteristic N Beta 95% CI1 p-value
group



    BWH 96
    MGH 90 -0.10 -0.62, 0.42 0.710
Age 186 0.00 -0.02, 0.02 0.884
Gender



    Female 80
    Male 106 -0.28 -0.86, 0.29 0.339
Race_Group



    White 96
    Asian 11 0.47 -0.64, 1.6 0.410
    Black 52 0.32 -0.36, 0.99 0.364
    Other 25 0.88 0.05, 1.7 0.041
HTN



    N 4
    Y 182 0.55 -1.5, 2.6 0.600
DM



    N 32
    Y 154 0.51 -0.22, 1.2 0.173
CAD



    N 10
    Y 176 0.82 -0.45, 2.1 0.208
Dialysis_Vintage 186 -0.19 -0.33, -0.05 0.009
HF_score



    1 51
    2 38 -0.07 -0.85, 0.70 0.850
    3 96 0.18 -0.47, 0.83 0.584
1 CI = Confidence Interval