title: “r task 2” author: “jagadish” date: “November 18, 2015” output: html_document

input1=read.csv("C:/Users/localadmin/Desktop/vetri r task/input.csv")
View(input1)

Generating random obs numbers

indexes1 = sample(1:nrow(input1), size=0.7*nrow(input1))
indexes1
##  [1]  7  6 13  1 22 24 27 29 17 30 16  9 23 15 11 19 25 14  2 10 28
View(indexes1)

Divide dataset into Training and testing data

inputtrain1=input1[indexes1,]
inputtest1=input1[-indexes1,]
nrow(input1)
## [1] 30
nrow(inputtrain1)
## [1] 21
nrow(inputtest1)
## [1] 9

Correlation for Training data

cor(inputtrain1)
##                                               Ticket.sales Stadium.Quality
## Ticket.sales                                     1.0000000      0.42264802
## Stadium.Quality                                  0.4226480      1.00000000
## Home_Team_Current.season.s.winning.percentage    0.5518482      0.19609818
## Away_Team_Current.season.s.winning.percentage    0.5236501     -0.09817119
## Distance.B.w.1.teams                             0.4377773      0.36087175
## Weekend                                          0.2465015      0.05521576
## Free.to.air.Tv                                   0.1551853     -0.09571311
## X.of.promotions.provided                         0.9871527      0.39271434
##                                               Home_Team_Current.season.s.winning.percentage
## Ticket.sales                                                                     0.55184822
## Stadium.Quality                                                                  0.19609818
## Home_Team_Current.season.s.winning.percentage                                    1.00000000
## Away_Team_Current.season.s.winning.percentage                                    0.17364575
## Distance.B.w.1.teams                                                             0.16116913
## Weekend                                                                          0.08177771
## Free.to.air.Tv                                                                  -0.06399298
## X.of.promotions.provided                                                         0.55915507
##                                               Away_Team_Current.season.s.winning.percentage
## Ticket.sales                                                                     0.52365006
## Stadium.Quality                                                                 -0.09817119
## Home_Team_Current.season.s.winning.percentage                                    0.17364575
## Away_Team_Current.season.s.winning.percentage                                    1.00000000
## Distance.B.w.1.teams                                                             0.15134255
## Weekend                                                                         -0.19303521
## Free.to.air.Tv                                                                  -0.03944930
## X.of.promotions.provided                                                         0.53312570
##                                               Distance.B.w.1.teams
## Ticket.sales                                             0.4377773
## Stadium.Quality                                          0.3608718
## Home_Team_Current.season.s.winning.percentage            0.1611691
## Away_Team_Current.season.s.winning.percentage            0.1513425
## Distance.B.w.1.teams                                     1.0000000
## Weekend                                                  0.3283176
## Free.to.air.Tv                                           0.2811536
## X.of.promotions.provided                                 0.4880455
##                                                   Weekend Free.to.air.Tv
## Ticket.sales                                   0.24650154     0.15518528
## Stadium.Quality                                0.05521576    -0.09571311
## Home_Team_Current.season.s.winning.percentage  0.08177771    -0.06399298
## Away_Team_Current.season.s.winning.percentage -0.19303521    -0.03944930
## Distance.B.w.1.teams                           0.32831762     0.28115359
## Weekend                                        1.00000000     0.55470020
## Free.to.air.Tv                                 0.55470020     1.00000000
## X.of.promotions.provided                       0.23342969     0.17162672
##                                               X.of.promotions.provided
## Ticket.sales                                                 0.9871527
## Stadium.Quality                                              0.3927143
## Home_Team_Current.season.s.winning.percentage                0.5591551
## Away_Team_Current.season.s.winning.percentage                0.5331257
## Distance.B.w.1.teams                                         0.4880455
## Weekend                                                      0.2334297
## Free.to.air.Tv                                               0.1716267
## X.of.promotions.provided                                     1.0000000

Linear Regression model for training data and interpretation

input12<-lm(Ticket.sales~X.of.promotions.provided,data=inputtrain1)
summary(input12)
## 
## Call:
## lm(formula = Ticket.sales ~ X.of.promotions.provided, data = inputtrain1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8083.5 -1576.1  -861.7   652.9 19751.9 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              3.393e+03  1.883e+03   1.802   0.0875 .  
## X.of.promotions.provided 2.362e+00  8.769e-02  26.930   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5602 on 19 degrees of freedom
## Multiple R-squared:  0.9745, Adjusted R-squared:  0.9731 
## F-statistic: 725.2 on 1 and 19 DF,  p-value: < 2.2e-16

Predicting ticket sales for test data

predicted1<- predict(input12, newdata=inputtest1[,-1])
predicted1
##         3         4         5         8        12        18        20 
## 93569.383 92997.871 89134.263 79798.783 31829.579 37707.649 19187.833 
##        21        26 
## 16729.388  8331.471

Original ticket sales and predicted ticket sales

original1<-inputtest1$Ticket.sales
ticketsales1<-cbind(original1,predicted1)
ticketsales1
##    original1 predicted1
## 3      95460  93569.383
## 4      94856  92997.871
## 5      90764  89134.263
## 8      80883  79798.783
## 12     54730  31829.579
## 18     36324  37707.649
## 20     17600  19187.833
## 21     14861  16729.388
## 26      6969   8331.471