data<-read.csv('avocado.csv')
summary(data)
##      date           average_price    total_volume         type          
##  Length:12628       Min.   :0.500   Min.   :    253   Length:12628      
##  Class :character   1st Qu.:1.100   1st Qu.:  15733   Class :character  
##  Mode  :character   Median :1.320   Median :  94806   Mode  :character  
##                     Mean   :1.359   Mean   : 325259                     
##                     3rd Qu.:1.570   3rd Qu.: 430222                     
##                     Max.   :2.780   Max.   :5660216                     
##       year       geography            Mileage    
##  Min.   :2017   Length:12628       Min.   : 111  
##  1st Qu.:2018   Class :character   1st Qu.:1097  
##  Median :2019   Mode  :character   Median :2193  
##  Mean   :2019                      Mean   :1911  
##  3rd Qu.:2020                      3rd Qu.:2632  
##  Max.   :2020                      Max.   :2998
library(plyr)
str(data)
## 'data.frame':    12628 obs. of  7 variables:
##  $ date         : chr  "2017/12/3" "2017/12/3" "2017/12/3" "2017/12/3" ...
##  $ average_price: num  1.39 1.44 1.07 1.62 1.43 1.58 1.14 1.77 1.4 1.88 ...
##  $ total_volume : int  139970 3577 504933 10609 658939 38754 86646 1829 488588 21338 ...
##  $ type         : chr  "conventional" "organic" "conventional" "organic" ...
##  $ year         : int  2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 ...
##  $ geography    : chr  "Albany" "Albany" "Atlanta" "Atlanta" ...
##  $ Mileage      : int  2832 2832 2199 2199 2679 2679 827 827 2998 2998 ...
# Let's build a simple histogram
hist(data$average_price ,
main = "Histogram of average_price",
xlab = "Price in USD (US Dollar)")

library(ggplot2)
ggplot(data, aes(x = average_price, fill = type)) +
geom_histogram(bins = 30, col = "red") +
scale_fill_manual(values = c("blue", "green")) +
ggtitle("Frequency of Average Price - Oragnic vs. Conventional")

# Simple EFA with ggplot
ggplot() +
geom_col(data, mapping = aes(x = reorder(geography,total_volume),
y = total_volume, fill = year )) +
xlab("geography")+
ylab("total_volume")+
theme(axis.text.x = element_text(angle = 90, size = 7))