These linear models try to see if there’s any relation between Women working and being involve and politics and Child mortality. I got all my the data from http://statusofwomendata.org

##        State Labor..participation.White Labor.participation.Hispanic
## 1    Alabama                       0.51                         0.54
## 2     Alaska                       0.67                         0.77
## 3    Arizona                       0.54                         0.56
## 4   Arkansas                       0.53                         0.59
## 5 California                       0.56                         0.58
## 6   Colorado                       0.63                         0.62
##   Labor.participation.Black Labor.participaton.All.Women Score Grade
## 1                      0.59                         0.53  3.77    D 
## 2                       n/a                         0.67  4.22    B 
## 3                      0.62                         0.55  3.99    C+
## 4                      0.60                         0.54  3.47     F
## 5                      0.59                         0.58  4.14    B-
## 6                      0.65                         0.63  4.21    B 
##   All.Women White.Women Hispanic.Women Black.Women
## 1        37         6.8            5.2        13.3
## 2        12         3.2            N/A         N/A
## 3        15         4.9            6.0        10.4
## 4        27         6.5            5.9        10.5
## 5         5         3.9            4.6         9.1
## 6         6         4.6            5.5        11.2
## 
## Call:
## lm(formula = All.Women ~ Labor.participaton.All.Women + Score, 
##     data = FullData1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.3037  -7.7980   0.6553   5.5191  22.2687 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    96.4180    21.1891   4.550 3.55e-05 ***
## Labor.participaton.All.Women -124.9925    41.0167  -3.047  0.00371 ** 
## Score                          -0.6325     5.6189  -0.113  0.91083    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.857 on 49 degrees of freedom
## Multiple R-squared:  0.2336, Adjusted R-squared:  0.2024 
## F-statistic:  7.47 on 2 and 49 DF,  p-value: 0.001474
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
##  studentized Breusch-Pagan test
## 
## data:  Out1
## BP = 8.3806, df = 2, p-value = 0.01514

```

After testing for Heteroskedasticity we can see that the value we gotten states that yes there might be some heteroskdasticity in my data, which I assume will occur because of some outliers… Here is the plot:

Now let’s see what happens when we work with ethnicities, this time I’m going to try with White women.

FullData1 <-read.csv("FullData.csv")
Out2 <-lm(White.Women~Labor..participation.White, data = FullData1)
summary(Out2)
## 
## Call:
## lm(formula = White.Women ~ Labor..participation.White, data = FullData1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.94552 -0.62496 -0.06983  0.70494  1.47222 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  12.038      1.532   7.856 2.78e-10 ***
## Labor..participation.White  -11.682      2.585  -4.518 3.83e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8888 on 50 degrees of freedom
## Multiple R-squared:  0.2899, Adjusted R-squared:  0.2757 
## F-statistic: 20.42 on 1 and 50 DF,  p-value: 3.828e-05
bptest(Out2)
## 
##  studentized Breusch-Pagan test
## 
## data:  Out2
## BP = 0.024295, df = 1, p-value = 0.8761
splot <- ggplot(aes(FullData1$Labor..participation.White,FullData1$White.Women),data = FullData1)
splot + geom_point() + geom_smooth(method="lm")

Now let us see with Black Women.

FullData1 <-read.csv("FullData.csv")
FullData1$Black.Women <- as.numeric(FullData1$Black.Women)
Out3 <-lm(Black.Women~Labor.participation.Black, data = FullData1)
summary(Out3)
## 
## Call:
## lm(formula = Black.Women ~ Labor.participation.Black, data = FullData1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.1818  -3.4000   0.8333   2.5750  17.0000 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    31.0000     7.6475   4.054 0.000249 ***
## Labor.participation.Black0.56 -23.0000    10.8152  -2.127 0.040184 *  
## Labor.participation.Black0.58 -10.0000    10.8152  -0.925 0.361155    
## Labor.participation.Black0.59  -9.6667     8.8306  -1.095 0.280733    
## Labor.participation.Black0.60 -21.6667     8.8306  -2.454 0.018975 *  
## Labor.participation.Black0.61 -11.5000     8.2603  -1.392 0.172172    
## Labor.participation.Black0.62 -16.0000     8.0612  -1.985 0.054617 .  
## Labor.participation.Black0.63 -12.0000     8.8306  -1.359 0.182402    
## Labor.participation.Black0.64 -23.3333     8.8306  -2.642 0.011998 *  
## Labor.participation.Black0.65 -19.8000     8.3775  -2.363 0.023468 *  
## Labor.participation.Black0.67  -7.0000     9.3663  -0.747 0.459569    
## Labor.participation.Black0.68 -22.0000    10.8152  -2.034 0.049151 *  
## Labor.participation.Black0.69 -24.0000     9.3663  -2.562 0.014600 *  
## Labor.participation.Black0.71 -20.0000    10.8152  -1.849 0.072424 .  
## Labor.participation.Blackn/a   -0.8182     7.9876  -0.102 0.918967    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.648 on 37 degrees of freedom
## Multiple R-squared:  0.6007, Adjusted R-squared:  0.4497 
## F-statistic: 3.976 on 14 and 37 DF,  p-value: 0.0003793
bptest(Out3)
## 
##  studentized Breusch-Pagan test
## 
## data:  Out3
## BP = 13.843, df = 14, p-value = 0.4615
splot <- ggplot(aes(FullData1$Labor.participation.Black,FullData1$Black.Women),data = FullData1)
splot + geom_point() + geom_smooth(method="lm")
## geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?