Please cite the original paper: Caffaratti et al., eLife 2024
Please find a copy of this file that can be modified in RStudio and run section by section on the Laboratory of Comparative Neuropsychology data share on Open Science Framework under ‘Cafferatti_et_al_inTUS_Resource’:
Please use the Qualtrics form to submit TUS parameters from a paper not on the datasets. We’ll aim to update them semi-annually:
We hope you find the inTUS resource useful. We will be working on evaluating it with multivariate pattern analyses once the sample sizes grow, and welcome your input.
Apologies we are not able to provide more support than making the resource documents available for R and RStudio users to use. Please contacts R team for support in using R.
Email the corresponding authors or contact us via the Qualtrics form with other queries: Hugo Caffaratti, Ben Slater & Chris Petkov.
Plots to show the distribution of the data for each of the continuous variables.
Overview of each key variable split by whether the resulting effect was ‘disruptive’ or ‘enhanced’.
| Effect | variable | n | mean | sd |
|---|---|---|---|---|
| Enhancement | Isppa_brain | 28 | 5.119 | 4.682 |
| Enhancement | DC | 28 | 25.714 | 21.909 |
| Enhancement | PRF | 28 | 576.786 | 732.707 |
| Enhancement | SD | 28 | 26.357 | 35.721 |
| Disruption | Isppa_brain | 25 | 9.231 | 10.710 |
| Disruption | DC | 25 | 17.630 | 16.052 |
| Disruption | PRF | 25 | 464.821 | 485.038 |
| Disruption | SD | 25 | 30.692 | 40.648 |
A simplified correlation matrix, this time the coloured scale refers to strength of correlation:
Blue refers to a negative correlation
Red refers to a positive correlation
A binomial logistic regression to understand the relationship between the key variables and the main categorical variables:
Effect: Disruption vs. Enhancement
Mode: Online vs. Offline stimulation
##
## Call:
## glm(formula = Effect ~ 1 + Mode + Isppa_brain, family = "binomial",
## data = df_values)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.31268 0.47933 -0.652 0.5142
## ModeOffline -0.62749 0.57684 -1.088 0.2767
## Isppa_brain 0.07515 0.04338 1.732 0.0832 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 73.304 on 52 degrees of freedom
## Residual deviance: 68.470 on 50 degrees of freedom
## AIC: 74.47
##
## Number of Fisher Scoring iterations: 4
##
## Call:
## glm(formula = Effect ~ 1 + Mode + SD, family = "binomial", data = df_values)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.078018 0.399674 0.195 0.845
## ModeOffline -0.981828 0.697176 -1.408 0.159
## SD 0.010517 0.009227 1.140 0.254
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 73.304 on 52 degrees of freedom
## Residual deviance: 71.045 on 50 degrees of freedom
## AIC: 77.045
##
## Number of Fisher Scoring iterations: 4
##
## Call:
## glm(formula = Effect ~ 1 + Mode + DC, family = "binomial", data = df_values)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.15534 0.68475 1.687 0.0916 .
## ModeOffline -1.05139 0.66289 -1.586 0.1127
## DC -0.03451 0.01843 -1.873 0.0611 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 73.304 on 52 degrees of freedom
## Residual deviance: 68.228 on 50 degrees of freedom
## AIC: 74.228
##
## Number of Fisher Scoring iterations: 3
##
## Call:
## glm(formula = Effect ~ 1 + Mode + PRF, family = "binomial", data = df_values)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6088535 0.5686211 1.071 0.284
## ModeOffline -0.8276136 0.6251253 -1.324 0.186
## PRF -0.0005864 0.0005273 -1.112 0.266
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 73.304 on 52 degrees of freedom
## Residual deviance: 71.053 on 50 degrees of freedom
## AIC: 77.053
##
## Number of Fisher Scoring iterations: 4