Citation information

Please cite the original paper: Caffaratti et al., eLife 2024

https://elifesciences.org/reviewed-preprints/100827

Instructions on use

  1. Please find a copy of this file that can be modified in RStudio and run section by section on the Laboratory of Comparative Neuropsychology data share on Open Science Framework under ‘Cafferatti_et_al_inTUS_Resource’:

    https://osf.io/arqp8/

  2. Please use the Qualtrics form to submit TUS parameters from a paper not on the datasets. We’ll aim to update them semi-annually:

    https://uiowa.qualtrics.com/jfe/form/SV_4VOvb0fdwvACDkO

  3. We hope you find the inTUS resource useful. We will be working on evaluating it with multivariate pattern analyses once the sample sizes grow, and welcome your input.

  4. Apologies we are not able to provide more support than making the resource documents available for R and RStudio users to use. Please contacts R team for support in using R.

  5. Email the corresponding authors or contact us via the Qualtrics form with other queries: Hugo Caffaratti, Ben Slater & Chris Petkov.

Boxplots

Plots to show the distribution of the data for each of the continuous variables.

Isppa (brain - W/cm2)

Duty Cycle (%)

Pulse Repetition Frequency (Hz)

Sonication Duration (SD)

Summary statistics

Overview of each key variable split by whether the resulting effect was ‘disruptive’ or ‘enhanced’.

Effect variable n mean sd
Enhancement Isppa_brain 28 5.119 4.682
Enhancement DC 28 25.714 21.909
Enhancement PRF 28 576.786 732.707
Enhancement SD 28 26.357 35.721
Disruption Isppa_brain 25 9.231 10.710
Disruption DC 25 17.630 16.052
Disruption PRF 25 464.821 485.038
Disruption SD 25 30.692 40.648

Correlation Matrix

A simplified correlation matrix, this time the coloured scale refers to strength of correlation:

Logistic Regression

A binomial logistic regression to understand the relationship between the key variables and the main categorical variables:

Isppa (brain - W/cm2)

## 
## Call:
## glm(formula = Effect ~ 1 + Mode + Isppa_brain, family = "binomial", 
##     data = df_values)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.31268    0.47933  -0.652   0.5142  
## ModeOffline -0.62749    0.57684  -1.088   0.2767  
## Isppa_brain  0.07515    0.04338   1.732   0.0832 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 73.304  on 52  degrees of freedom
## Residual deviance: 68.470  on 50  degrees of freedom
## AIC: 74.47
## 
## Number of Fisher Scoring iterations: 4

Sonication Duration (sec)

## 
## Call:
## glm(formula = Effect ~ 1 + Mode + SD, family = "binomial", data = df_values)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.078018   0.399674   0.195    0.845
## ModeOffline -0.981828   0.697176  -1.408    0.159
## SD           0.010517   0.009227   1.140    0.254
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 73.304  on 52  degrees of freedom
## Residual deviance: 71.045  on 50  degrees of freedom
## AIC: 77.045
## 
## Number of Fisher Scoring iterations: 4

Duty Cycle (%)

## 
## Call:
## glm(formula = Effect ~ 1 + Mode + DC, family = "binomial", data = df_values)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  1.15534    0.68475   1.687   0.0916 .
## ModeOffline -1.05139    0.66289  -1.586   0.1127  
## DC          -0.03451    0.01843  -1.873   0.0611 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 73.304  on 52  degrees of freedom
## Residual deviance: 68.228  on 50  degrees of freedom
## AIC: 74.228
## 
## Number of Fisher Scoring iterations: 3

Pulse Repetition Frequency (Hz)

## 
## Call:
## glm(formula = Effect ~ 1 + Mode + PRF, family = "binomial", data = df_values)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.6088535  0.5686211   1.071    0.284
## ModeOffline -0.8276136  0.6251253  -1.324    0.186
## PRF         -0.0005864  0.0005273  -1.112    0.266
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 73.304  on 52  degrees of freedom
## Residual deviance: 71.053  on 50  degrees of freedom
## AIC: 77.053
## 
## Number of Fisher Scoring iterations: 4