Abstract

Glutathione (GSH) is the principal antioxidant safeguarding neural tissue from oxidative damage. Schizophrenia spectrum disorders (SSDs) are characterized not only by positive symptoms but also by persistent negative symptoms and cognitive deficits that are closely tied to functional outcomes. Although both brain imaging studies (using magnetic resonance spectroscopy [MRS]) and blood-based biochemical assays have investigated GSH levels—including total (GSHt), reduced (GSHr), and oxidized (GSSG) forms—the findings have been inconsistent. This systematic review and meta‐analysis synthesized data from studies reporting correlations between GSH levels and clinical parameters (symptom severity, cognitive performance, and functional capacity) in SSD populations. Random‐effects models with Fisher’s Z transformation were used to pool effect sizes. Overall, while MRS‐derived brain GSH measures did not consistently correlate with clinical symptomatology, blood GSHt levels were significantly negatively associated with total and negative symptoms and positively related to cognitive and executive functions. These results suggest that peripheral GSHt may serve as a useful biomarker for SSD severity.

Key words: Glutathione, Schizophrenia Spectrum Disorders, Meta‐analysis, Magnetic Resonance Spectroscopy, Biomarkers, Symptom Severity, Cognitive Function.


Introduction

Schizophrenia spectrum disorders (SSDs) are complex, chronic conditions affecting approximately 1% of the global population. While positive symptoms (e.g., hallucinations and delusions) are often ameliorated with current treatments, negative symptoms and cognitive impairments remain largely refractory and are strongly linked to poor functional outcomes. Among the biological mechanisms implicated in SSD, oxidative stress has gained attention because of its role in neuronal damage. Glutathione (GSH), a tripeptide composed of glutamate, cysteine, and glycine, is the major endogenous antioxidant in the brain and peripheral tissues. It exists in different forms—total (GSHt), reduced (GSHr), and oxidized (GSSG)—and is thought to be involved in modulating neurotransmission (including glutamatergic signaling) and cellular redox balance.

Despite a substantial number of studies using MRS to quantify brain GSH and biochemical assays to measure blood GSH levels, the literature remains inconclusive regarding their relationship with symptom severity, cognitive performance, and overall functioning in SSDs. The objective of this meta‐analysis is to integrate findings from both imaging and peripheral studies in order to clarify whether GSH levels are associated with clinical outcomes and could potentially serve as biomarkers of symptom burden in SSD populations.


Methods

A systematic review and meta‐analysis were conducted in line with PRISMA guidelines. Databases including PubMed, Scopus, Web of Science, Medline, and PsycINFO were searched for studies that: - Enrolled SSD patients (and healthy controls, when applicable); - Reported measurements of brain GSH (via MRS) and/or blood GSH (GSHt, GSHr, GSSG); - Assessed clinical outcomes such as total, positive, or negative symptom severity, cognitive performance, and functional capacity; - Provided sufficient data to compute standardized effect sizes.

Studies with overlapping samples, subjects outside the age range 16–65 years, or those evaluating non‐relevant oxidative stress markers were excluded. Data extraction included sample size, correlation coefficients between GSH levels and clinical measures, measurement modality, and study identifiers.

Effect sizes were computed after transforming correlation coefficients into Fisher’s Z values. Variances were derived from sample sizes (using 1/[n – 3]). Random‐effects models (using REML estimation) were fitted using the metafor and netmeta packages in R. Subgroup analyses (by measurement type) and meta‐regressions (testing the moderating effects of “Measurement” and “Outcome”) were also performed.


Data Preparation and Analysis Code

Below, the R code loads the required libraries, prepares the data (including separate data frames for imaging and blood studies), computes Fisher’s Z values, and creates a study identifier.

# ============================================================
# 1. LOAD LIBRARIES
# ============================================================
# Uncomment and run the following line if installation is needed:
# install.packages(c("metafor", "netmeta", "UpSetR", "corrplot", "circlize", "ComplexHeatmap", "tidyr", "dplyr", "grid"))

library(metafor)
library(netmeta)
library(UpSetR)
library(corrplot)
library(circlize)
library(ComplexHeatmap)
library(tidyr)
library(dplyr)
library(grid)  # for grid.text, grid.rect, etc.

# ============================================================
# 2. PREPARE DATA: CREATE DATA FRAMES FOR EACH SUBGROUP
# ============================================================
# --- Imaging Data (MRS studies) ---
imaging_positive <- data.frame(
  Authors     = c("Matsuzawa et al. 2008", "Reyes-Madrigal et al. 2019", "Iwata et al. 2021", 
                  "Coughlin et al. 2021", "Lesh et al. 2021"),
  Correlation = c(-0.43, 0.96, -0.08, 0.14, -0.266),
  SampleSize  = c(20, 10, 67, 16, 33),
  Measurement = "Imaging",
  Outcome     = "Positive",
  stringsAsFactors = FALSE
)

imaging_negative <- data.frame(
  Authors     = c("Matsuzawa et al. 2008", "Reyes-Madrigal et al. 2019", "Iwata et al. 2021", 
                  "Coughlin et al. 2021", "Lesh et al. 2021", "Ravanfar et al. 2022"),
  Correlation = c(-0.6, 0.36, 0.15, 0.21, -0.01, -0.348),
  SampleSize  = c(20, 10, 67, 16, 33, 12),
  Measurement = "Imaging",
  Outcome     = "Negative",
  stringsAsFactors = FALSE
)

imaging_general <- data.frame(
  Authors     = c("Reyes-Madrigal et al. 2019", "Iwata et al. 2021"),
  Correlation = c(0.14, -0.15),
  SampleSize  = c(10, 67),
  Measurement = "Imaging",
  Outcome     = "General",
  stringsAsFactors = FALSE
)

imaging_total <- data.frame(
  Authors     = c("Matsuzawa et al. 2008", "Reyes-Madrigal et al. 2019", "Iwata et al. 2021", 
                  "Lesh et al. 2021", "Ravanfar et al. 2022"),
  Correlation = c(-0.41, 0.42, -0.08, -0.293, -0.286),
  SampleSize  = c(20, 10, 67, 33, 12),
  Measurement = "Imaging",
  Outcome     = "Total",
  stringsAsFactors = FALSE
)

imaging_ideational_fluency <- data.frame(
  Authors     = c("Matsuzawa et al. 2008", "Coughlin et al. 2021"),
  Correlation = c(0.21, 0.61),
  SampleSize  = c(36, 16),
  Measurement = "Imaging",
  Outcome     = "Ideational_Fluency",
  stringsAsFactors = FALSE
)

imaging_processing_speed <- data.frame(
  Authors     = c("Matsuzawa et al. 2008", "Coughlin et al. 2021"),
  Correlation = c(-0.14, 0.26),
  SampleSize  = c(36, 16),
  Measurement = "Imaging",
  Outcome     = "Processing_Speed",
  stringsAsFactors = FALSE
)

imaging_verbal_memory <- data.frame(
  Authors     = c("Matsuzawa et al. 2008", "Coughlin et al. 2021"),
  Correlation = c(0.18, 0.12),
  SampleSize  = c(36, 16),
  Measurement = "Imaging",
  Outcome     = "Verbal_Memory",
  stringsAsFactors = FALSE
)

imaging_functioning <- data.frame(
  Authors     = c("Lesh et al. 2021", "Mackinley et al. 2022", "Ravanfar et al. 2022"),
  Correlation = c(0.185, 0.04, 0.452),
  SampleSize  = c(33, 53, 12),
  Measurement = "Imaging",
  Outcome     = "Functioning",
  stringsAsFactors = FALSE
)

# --- GSHt (Total Glutathione in blood) Data ---
gsht_positive <- data.frame(
  Authors     = c("Raffa et al. 2011", "Tsai et al. 2013", "Nucifora et al. 2017", "Hendouei et al. 2018", 
                  "Hendouei et al. 2018*", "Hendouei et al. 2018**", "Chien et al. 2020", "Chien et al. 2020*", 
                  "Coughlin et al. 2021", "Gares-Caballer et al. 2022", "Lin et al. 2023 (N=92)", "Lin et al. 2023 (N=219)", 
                  "Fathy et al. 2015", "Kizilpinar et al. 2023"),
  Correlation = c(0.5, -0.304, -0.359, -0.1, -0.2, 0.2, 0.03, 0.22, -0.21, -0.06, 0.078, 0.071, 0.316, -0.139),
  SampleSize  = c(23, 41, 51, 34, 34, 32, 43, 19, 24, 30, 92, 219, 30, 26),
  Measurement = "GSHt",
  Outcome     = "Positive",
  stringsAsFactors = FALSE
)

gsht_negative <- data.frame(
  Authors     = c("Raffa et al. 2011", "Tsai et al. 2013", "Nucifora et al. 2017", "Hendouei et al. 2018", 
                  "Hendouei et al. 2018*", "Hendouei et al. 2018**", "Chien et al. 2020", "Chien et al. 2020*", 
                  "Coughlin et al. 2021", "Gares-Caballer et al. 2022", "Lin et al. 2023 (N=92)", "Lin et al. 2023 (N=219)",
                  "Fathy et al. 2015", "Kizilpinar et al. 2023"),
  Correlation = c(-0.02, -0.349, -0.203, 0.07, -0.1, -0.1, 0, -0.17, -0.06, 0.01, -0.027, -0.055, -0.805, -0.038),
  SampleSize  = c(23, 41, 51, 34, 34, 32, 43, 19, 24, 30, 92, 219, 30, 26),
  Measurement = "GSHt",
  Outcome     = "Negative",
  stringsAsFactors = FALSE
)

gsht_general <- data.frame(
  Authors     = c("Nucifora et al. 2017", "Hendouei et al. 2018", "Hendouei et al. 2018*", "Hendouei et al. 2018**", 
                  "Gares-Caballer et al. 2022", "Lin et al. 2023 (N=92)", "Lin et al. 2023 (N=219)", "Kizilpinar et al. 2023"),
  Correlation = c(-0.262, -0.1, -0.1, 0.2, 0.001, 0.145, -0.099, 0.037),
  SampleSize  = c(51, 34, 34, 32, 30, 92, 219, 26),
  Measurement = "GSHt",
  Outcome     = "General",
  stringsAsFactors = FALSE
)

gsht_total <- data.frame(
  Authors     = c("Tuncel et al. 2015", "Tsai et al. 2013", "Nucifora et al. 2017", "Hendouei et al. 2018", 
                  "Hendouei et al. 2018*", "Hendouei et al. 2018**", "Lin et al. 2023 (N=92)", "Lin et al. 2023 (N=219)",
                  "Kizilpinar et al. 2023"),
  Correlation = c(-0.106, -0.413, -0.311, -0.1, -0.1, 0.1, 0.068, -0.047, 0.016),
  SampleSize  = c(18, 41, 51, 34, 34, 32, 92, 219, 26),
  Measurement = "GSHt",
  Outcome     = "Total",
  stringsAsFactors = FALSE
)

gsht_executive <- data.frame(
  Authors     = c("Martinez-Cengotitobengoa et al. 2012", "Gonzalez-Liencres et al. 2014", "Coughlin et al. 2021", "Gares-Caballer et al. 2022"),
  Correlation = c(0.072, 0.171, 0.45, 0.4),
  SampleSize  = c(28, 41, 24, 30),
  Measurement = "GSHt",
  Outcome     = "Executive",
  stringsAsFactors = FALSE
)

gsht_global_cog <- data.frame(
  Authors     = c("Nucifora et al. 2017", "Coughlin et al. 2021", "Gares-Caballer et al. 2022"),
  Correlation = c(0.245, 0.57, 0.34),
  SampleSize  = c(51, 24, 30),
  Measurement = "GSHt",
  Outcome     = "Global_Cognitive_Score",
  stringsAsFactors = FALSE
)

gsht_processing_speed <- data.frame(
  Authors     = c("Gonzalez-Liencres et al. 2014", "Coughlin et al. 2021", "Gares-Caballer et al. 2022",
                  "Lin et al. 2023 (N=92)", "Lin et al. 2023 (N=219)"),
  Correlation = c(-0.119, 0.41, 0.21, -0.172, 0.045),
  SampleSize  = c(41, 24, 30, 92, 219),
  Measurement = "GSHt",
  Outcome     = "Processing_Speed",
  stringsAsFactors = FALSE
)

gsht_cognitive_flex <- data.frame(
  Authors     = c("Gonzalez-Liencres et al. 2014", "Coughlin et al. 2021", "Lin et al. 2023 (N=92)", "Lin et al. 2023 (N=219)"),
  Correlation = c(0.2, -0.06, -0.059, 0.054),
  SampleSize  = c(41, 24, 92, 219),
  Measurement = "GSHt",
  Outcome     = "Cognitive_Flexibility",
  stringsAsFactors = FALSE
)

gsht_working_memory <- data.frame(
  Authors     = c("Lin et al. 2023 (N=92)", "Lin et al. 2023 (N=219)"),
  Correlation = c(-0.094, -0.027),
  SampleSize  = c(92, 219),
  Measurement = "GSHt",
  Outcome     = "Working_Memory",
  stringsAsFactors = FALSE
)

gsht_cgi <- data.frame(
  Authors     = c("Raffa et al. 2009", "Gares-Caballer et al. 2022"),
  Correlation = c(-0.28, -0.08),
  SampleSize  = c(88, 30),
  Measurement = "GSHt",
  Outcome     = "CGI",
  stringsAsFactors = FALSE
)

gsht_functioning <- data.frame(
  Authors     = c("Lin et al. 2023 (N=92)", "Lin et al. 2023 (N=219)"),
  Correlation = c(-0.107, 0.076),
  SampleSize  = c(92, 219),
  Measurement = "GSHt",
  Outcome     = "Functioning",
  stringsAsFactors = FALSE
)

# --- GSHr (Reduced Glutathione in blood) Data ---
gshr_positive <- data.frame(
  Authors     = c("Raffa et al. 2011", "Guidara et al. 2020", "Cruz et al. 2021", "Piatoikina et al. 2023", "Altuntas et al. 2000"),
  Correlation = c(0.51, -0.147, 0.082, 0.11, -0.18),
  SampleSize  = c(23, 66, 85, 125, 48),
  Measurement = "GSHr",
  Outcome     = "Positive",
  stringsAsFactors = FALSE
)

gshr_negative <- data.frame(
  Authors     = c("Raffa et al. 2011", "Guidara et al. 2020", "Cruz et al. 2021", "Wiedlocha et al. 2023", "Piatoikina et al. 2023"),
  Correlation = c(-0.05, -0.011, 0.036, -0.413, -0.02),
  SampleSize  = c(23, 66, 85, 82, 125),
  Measurement = "GSHr",
  Outcome     = "Negative",
  stringsAsFactors = FALSE
)

gshr_general <- data.frame(
  Authors     = c("Guidara et al. 2020", "Piatoikina et al. 2023"),
  Correlation = c(-0.156, 0.01),
  SampleSize  = c(66, 125),
  Measurement = "GSHr",
  Outcome     = "General",
  stringsAsFactors = FALSE
)

gshr_total <- data.frame(
  Authors     = c("Guidara et al. 2020", "Piatoikina et al. 2023", "Altuntas et al. 2000"),
  Correlation = c(-0.155, 0.03, -0.08),
  SampleSize  = c(66, 125, 48),
  Measurement = "GSHr",
  Outcome     = "Total",
  stringsAsFactors = FALSE
)

gshr_working_memory <- data.frame(
  Authors     = c("Cruz et al. 2021", "Piatoikina et al. 2021"),
  Correlation = c(-0.041, -0.003),
  SampleSize  = c(85, 125),
  Measurement = "GSHr",
  Outcome     = "Working_Memory",
  stringsAsFactors = FALSE
)

gshr_global_cog <- data.frame(
  Authors     = c("Guidara et al. 2020", "Cruz et al. 2021"),
  Correlation = c(0.118, -0.092),
  SampleSize  = c(66, 85),
  Measurement = "GSHr",
  Outcome     = "Global_Cognitive_Score",
  stringsAsFactors = FALSE
)

gshr_executive <- data.frame(
  Authors     = c("Cruz et al. 2021", "Piatoikina et al. 2021"),
  Correlation = c(-0.114, 0.043),
  SampleSize  = c(85, 125),
  Measurement = "GSHr",
  Outcome     = "Executive",
  stringsAsFactors = FALSE
)

gshr_verbal_memory <- data.frame(
  Authors     = c("Cruz et al. 2021", "Piatoikina et al. 2021"),
  Correlation = c(0, 0.02),
  SampleSize  = c(85, 125),
  Measurement = "GSHr",
  Outcome     = "Verbal_Memory",
  stringsAsFactors = FALSE
)

gshr_processing_speed <- data.frame(
  Authors     = c("Cruz et al. 2021", "Piatoikina et al. 2021"),
  Correlation = c(0.038, 0.03),
  SampleSize  = c(85, 125),
  Measurement = "GSHr",
  Outcome     = "Processing_Speed",
  stringsAsFactors = FALSE
)

gshr_cgi <- data.frame(
  Authors     = c("Raffa et al. 2009", "Ballesteros et al. 2013"),
  Correlation = c(-0.32, 2.08),  # NOTE: 2.08 is not valid and will be filtered out.
  SampleSize  = c(88, 54),
  Measurement = "GSHr",
  Outcome     = "CGI",
  stringsAsFactors = FALSE
)

# --- GSSG (Oxidized Glutathione in blood) Data ---
gssg_positive <- data.frame(
  Authors     = c("Raffa et al. 2011", "Tao et al. 2020"),
  Correlation = c(0.16, 0.119),
  SampleSize  = c(23, 90),
  Measurement = "GSSG",
  Outcome     = "Positive",
  stringsAsFactors = FALSE
)

gssg_negative <- data.frame(
  Authors     = c("Raffa et al. 2011", "Tao et al. 2020"),
  Correlation = c(0.17, -0.082),
  SampleSize  = c(23, 90),
  Measurement = "GSSG",
  Outcome     = "Negative",
  stringsAsFactors = FALSE
)

# ============================================================
# 3. COMBINE ALL DATA & COMPUTE FISHER'S Z AND VARIANCE
# ============================================================
all_data <- rbind(
  imaging_positive,
  imaging_negative,
  imaging_general,
  imaging_total,
  imaging_ideational_fluency,
  imaging_processing_speed,
  imaging_verbal_memory,
  imaging_functioning,
  gsht_positive,
  gsht_negative,
  gsht_general,
  gsht_total,
  gsht_executive,
  gsht_global_cog,
  gsht_processing_speed,
  gsht_cognitive_flex,
  gsht_working_memory,
  gsht_cgi,
  gsht_functioning,
  gshr_positive,
  gshr_negative,
  gshr_general,
  gshr_total,
  gshr_working_memory,
  gshr_global_cog,
  gshr_executive,
  gshr_verbal_memory,
  gshr_processing_speed,
  gshr_cgi,
  gssg_positive,
  gssg_negative
)

# Remove rows with invalid correlations (absolute correlation must be < 1)
all_data <- all_data[abs(all_data$Correlation) < 1, ]

# Compute Fisher's Z transformation and corresponding variance
all_data$FisherZ   <- atanh(all_data$Correlation)
all_data$VarFisherZ<- 1/(all_data$SampleSize - 3)

# Create a study identifier based on the Authors column
all_data$Study <- all_data$Authors

1. Overall Random‐Effects Meta‐Analysis

To estimate an overall effect size (i.e., the association between GSH levels and clinical measures) and quantify heterogeneity, a random‐effects meta‐analysis was conducted using the Fisher’s Z effect sizes and their variances.

ma_overall <- rma(yi = FisherZ, 
                  vi = VarFisherZ, 
                  data = all_data, 
                  method = "REML")

cat("Overall Random-Effects Meta-Analysis:\n")
## Overall Random-Effects Meta-Analysis:
print(summary(ma_overall))
## 
## Random-Effects Model (k = 124; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  -4.1723    8.3445   12.3445   17.9689   12.4445   
## 
## tau^2 (estimated amount of total heterogeneity): 0.0162 (SE = 0.0046)
## tau (square root of estimated tau^2 value):      0.1274
## I^2 (total heterogeneity / total variability):   47.91%
## H^2 (total variability / sampling variability):  1.92
## 
## Test for Heterogeneity:
## Q(df = 123) = 253.0875, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub    
##  -0.0192  0.0179  -1.0725  0.2835  -0.0543  0.0159    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explanation:
This model provides a pooled estimate of the association across all studies along with heterogeneity statistics (e.g., tau², I²).


2. Meta‐Regression with Moderators

A meta‐regression was performed to assess whether the type of measurement (e.g., Imaging vs. blood GSHt, GSHr, GSSG) and the specific clinical outcome (e.g., Total, Positive, Negative, Executive) moderated the observed associations.

# Ensure moderators are factors
all_data$Measurement <- as.factor(all_data$Measurement)
all_data$Outcome     <- as.factor(all_data$Outcome)

ma_meta_reg <- rma(yi = FisherZ, 
                   vi = VarFisherZ, 
                   mods = ~ Measurement + Outcome, 
                   data = all_data, 
                   method = "REML")

cat("Meta-Regression with Measurement and Outcome as Moderators:\n")
## Meta-Regression with Measurement and Outcome as Moderators:
print(summary(ma_meta_reg))
## 
## Mixed-Effects Model (k = 124; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##   1.0395   -2.0790   31.9210   77.5173   38.7210   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0137 (SE = 0.0047)
## tau (square root of estimated tau^2 value):             0.1170
## I^2 (residual heterogeneity / unaccounted variability): 41.34%
## H^2 (unaccounted variability / sampling variability):   1.70
## R^2 (amount of heterogeneity accounted for):            15.57%
## 
## Test for Residual Heterogeneity:
## QE(df = 108) = 204.0741, p-val < .0001
## 
## Test of Moderators (coefficients 2:16):
## QM(df = 15) = 33.0103, p-val = 0.0047
## 
## Model Results:
## 
##                                estimate      se     zval    pval    ci.lb 
## intrcpt                         -0.2802  0.1040  -2.6947  0.0070  -0.4839 
## MeasurementGSHt                  0.0275  0.0419   0.6571  0.5111  -0.0546 
## MeasurementGSSG                  0.1346  0.1035   1.2997  0.1937  -0.0683 
## MeasurementImaging               0.0360  0.0605   0.5953  0.5516  -0.0826 
## OutcomeCognitive_Flexibility     0.2870  0.1335   2.1502  0.0315   0.0254 
## OutcomeExecutive                 0.3855  0.1277   3.0193  0.0025   0.1352 
## OutcomeFunctioning               0.3074  0.1313   2.3412  0.0192   0.0501 
## OutcomeGeneral                   0.2118  0.1146   1.8473  0.0647  -0.0129 
## OutcomeGlobal_Cognitive_Score    0.4507  0.1322   3.4089  0.0007   0.1916 
## OutcomeIdeational_Fluency        0.6193  0.2066   2.9976  0.0027   0.2144 
## OutcomeNegative                  0.1462  0.1088   1.3439  0.1790  -0.0670 
## OutcomePositive                  0.2662  0.1090   2.4428  0.0146   0.0526 
## OutcomeProcessing_Speed          0.2834  0.1178   2.4054  0.0162   0.0525 
## OutcomeTotal                     0.1558  0.1123   1.3875  0.1653  -0.0643 
## OutcomeVerbal_Memory             0.3239  0.1385   2.3389  0.0193   0.0525 
## OutcomeWorking_Memory            0.2266  0.1256   1.8044  0.0712  -0.0195 
##                                  ci.ub      
## intrcpt                        -0.0764   ** 
## MeasurementGSHt                 0.1096      
## MeasurementGSSG                 0.3375      
## MeasurementImaging              0.1547      
## OutcomeCognitive_Flexibility    0.5485    * 
## OutcomeExecutive                0.6357   ** 
## OutcomeFunctioning              0.5648    * 
## OutcomeGeneral                  0.4365    . 
## OutcomeGlobal_Cognitive_Score   0.7099  *** 
## OutcomeIdeational_Fluency       1.0242   ** 
## OutcomeNegative                 0.3594      
## OutcomePositive                 0.4798    * 
## OutcomeProcessing_Speed         0.5142    * 
## OutcomeTotal                    0.3758      
## OutcomeVerbal_Memory            0.5953    * 
## OutcomeWorking_Memory           0.4728    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explanation:
This analysis evaluates whether differences in measurement modality or outcome type explain variability in effect sizes across studies.


3. Subgroup Meta‐Analyses by Measurement Type

To further investigate heterogeneity, separate random‐effects models were fitted for each measurement type.

measurement_levels <- levels(all_data$Measurement)
subgroup_results <- list()

for (m in measurement_levels) {
  dat_subset <- subset(all_data, Measurement == m)
  ma_sub <- rma(yi = FisherZ, 
                vi = VarFisherZ, 
                data = dat_subset, 
                method = "REML")
  subgroup_results[[m]] <- ma_sub
  cat("\n--- Meta-Analysis for Measurement:", m, "---\n")
  print(summary(ma_sub))
}
## 
## --- Meta-Analysis for Measurement: GSHr ---
## 
## Random-Effects Model (k = 26; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  11.6621  -23.3242  -19.3242  -16.8865  -18.7788   
## 
## tau^2 (estimated amount of total heterogeneity): 0.0061 (SE = 0.0051)
## tau (square root of estimated tau^2 value):      0.0784
## I^2 (total heterogeneity / total variability):   33.66%
## H^2 (total variability / sampling variability):  1.51
## 
## Test for Heterogeneity:
## Q(df = 25) = 40.7573, p-val = 0.0243
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub    
##  -0.0345  0.0269  -1.2829  0.1995  -0.0872  0.0182    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## --- Meta-Analysis for Measurement: GSHt ---
## 
## Random-Effects Model (k = 67; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##   0.3657   -0.7314    3.2686    7.6479    3.4591   
## 
## tau^2 (estimated amount of total heterogeneity): 0.0225 (SE = 0.0077)
## tau (square root of estimated tau^2 value):      0.1499
## I^2 (total heterogeneity / total variability):   56.97%
## H^2 (total variability / sampling variability):  2.32
## 
## Test for Heterogeneity:
## Q(df = 66) = 138.6789, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub    
##  -0.0226  0.0264  -0.8578  0.3910  -0.0744  0.0291    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## --- Meta-Analysis for Measurement: GSSG ---
## 
## Random-Effects Model (k = 4; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##   1.4970   -2.9941    1.0059   -0.7968   13.0059   
## 
## tau^2 (estimated amount of total heterogeneity): 0.0028 (SE = 0.0181)
## tau (square root of estimated tau^2 value):      0.0533
## I^2 (total heterogeneity / total variability):   11.67%
## H^2 (total variability / sampling variability):  1.13
## 
## Test for Heterogeneity:
## Q(df = 3) = 2.4825, p-val = 0.4785
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub    
##   0.0502  0.0751  0.6691  0.5034  -0.0969  0.1974    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## --- Meta-Analysis for Measurement: Imaging ---
## 
## Random-Effects Model (k = 27; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
## -15.5632   31.1263   35.1263   37.6425   35.6480   
## 
## tau^2 (estimated amount of total heterogeneity): 0.0881 (SE = 0.0384)
## tau (square root of estimated tau^2 value):      0.2969
## I^2 (total heterogeneity / total variability):   68.97%
## H^2 (total variability / sampling variability):  3.22
## 
## Test for Heterogeneity:
## Q(df = 26) = 69.7143, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub    
##   0.0392  0.0727  0.5398  0.5893  -0.1033  0.1818    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explanation:
This step provides pooled effect estimates and heterogeneity statistics separately for Imaging, GSHt, GSHr, and GSSG studies.


4. Network Meta‐Analysis by Measurement Category

Network meta‐analysis permits simultaneous comparisons across multiple outcomes (treated as “treatments”). For each measurement type, pairwise comparisons among outcomes were generated and analyzed using a random‐effects network meta‐analysis model.

library(netmeta)
network_results <- list()

for (m in measurement_levels) {
  dat_net <- subset(all_data, Measurement == m)
  
  # Compute standard errors from the variance of Fisher's Z
  dat_net$seTE <- sqrt(dat_net$VarFisherZ)
  
  # Create pairwise comparisons using outcome as the treatment variable
  pw <- pairwise(treat = Outcome, 
                 TE = FisherZ, 
                 seTE = seTE, 
                 studlab = Study, 
                 data = dat_net, 
                 sm = "SMD")
  
  # Run the network meta-analysis with a random effects model
  net_mod <- netmeta(TE      = pw$TE,
                     seTE    = pw$seTE,
                     treat1  = pw$treat1,
                     treat2  = pw$treat2,
                     studlab = pw$studlab,
                     sm      = "SMD",
                     comb.fixed  = FALSE,
                     comb.random = TRUE)
  
  cat("\n=== Network Meta-Analysis for Measurement:", m, "===\n")
  print(summary(net_mod))
  
  # Optional: Plot the network graph
  netgraph(net_mod, 
           plastic = TRUE, 
           col = "darkblue", 
           thickness = "se.random")
  
  network_results[[m]] <- net_mod
}
## 
## === Network Meta-Analysis for Measurement: GSHr ===
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                                        treat1                 treat2      TE
## Raffa et al. 2011                    Negative               Positive -0.6128
## Guidara et al. 2020                   General               Positive -0.0092
## Guidara et al. 2020    Global_Cognitive_Score               Positive  0.2666
## Guidara et al. 2020                  Negative               Positive  0.1371
## Guidara et al. 2020                  Positive                  Total  0.0082
## Cruz et al. 2021                    Executive               Positive -0.1967
## Cruz et al. 2021       Global_Cognitive_Score               Positive -0.1744
## Cruz et al. 2021                     Negative               Positive -0.0462
## Cruz et al. 2021                     Positive       Processing_Speed  0.0442
## Cruz et al. 2021                     Positive          Verbal_Memory  0.0822
## Cruz et al. 2021                     Positive         Working_Memory  0.1232
## Piatoikina et al. 2023                General               Positive -0.1004
## Piatoikina et al. 2023               Negative               Positive -0.1304
## Piatoikina et al. 2023               Positive                  Total  0.0804
## Altuntas et al. 2000                 Positive                  Total -0.1018
## Guidara et al. 2020                   General               Negative -0.1463
## Guidara et al. 2020    Global_Cognitive_Score               Negative  0.1296
## Guidara et al. 2020                  Negative                  Total  0.1453
## Cruz et al. 2021                    Executive               Negative -0.1505
## Cruz et al. 2021       Global_Cognitive_Score               Negative -0.1283
## Cruz et al. 2021                     Negative       Processing_Speed -0.0020
## Cruz et al. 2021                     Negative          Verbal_Memory  0.0360
## Cruz et al. 2021                     Negative         Working_Memory  0.0770
## Piatoikina et al. 2023                General               Negative  0.0300
## Piatoikina et al. 2023               Negative                  Total -0.0500
## Guidara et al. 2020                   General Global_Cognitive_Score -0.2758
## Guidara et al. 2020                   General                  Total -0.0010
## Piatoikina et al. 2023                General                  Total -0.0200
## Guidara et al. 2020    Global_Cognitive_Score                  Total  0.2748
## Cruz et al. 2021                    Executive         Working_Memory -0.0735
## Cruz et al. 2021       Global_Cognitive_Score         Working_Memory -0.0512
## Cruz et al. 2021             Processing_Speed         Working_Memory  0.0790
## Cruz et al. 2021                Verbal_Memory         Working_Memory  0.0410
## Piatoikina et al. 2021              Executive         Working_Memory  0.0460
## Piatoikina et al. 2021       Processing_Speed         Working_Memory  0.0330
## Piatoikina et al. 2021          Verbal_Memory         Working_Memory  0.0230
## Cruz et al. 2021                    Executive Global_Cognitive_Score -0.0222
## Cruz et al. 2021       Global_Cognitive_Score       Processing_Speed -0.1303
## Cruz et al. 2021       Global_Cognitive_Score          Verbal_Memory -0.0923
## Cruz et al. 2021                    Executive       Processing_Speed -0.1525
## Cruz et al. 2021                    Executive          Verbal_Memory -0.1145
## Piatoikina et al. 2021              Executive       Processing_Speed  0.0130
## Piatoikina et al. 2021              Executive          Verbal_Memory  0.0230
## Cruz et al. 2021             Processing_Speed          Verbal_Memory  0.0380
## Piatoikina et al. 2021       Processing_Speed          Verbal_Memory  0.0100
##                          seTE seTE.adj narms multiarm
## Raffa et al. 2011      0.3162   0.3162     2         
## Guidara et al. 2020    0.1782   0.2817     5        *
## Guidara et al. 2020    0.1782   0.2817     5        *
## Guidara et al. 2020    0.1782   0.2817     5        *
## Guidara et al. 2020    0.1782   0.2817     5        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Piatoikina et al. 2023 0.1280   0.1811     4        *
## Piatoikina et al. 2023 0.1280   0.1811     4        *
## Piatoikina et al. 2023 0.1280   0.1811     4        *
## Altuntas et al. 2000   0.2108   0.2108     2         
## Guidara et al. 2020    0.1782   0.2817     5        *
## Guidara et al. 2020    0.1782   0.2817     5        *
## Guidara et al. 2020    0.1782   0.2817     5        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Piatoikina et al. 2023 0.1280   0.1811     4        *
## Piatoikina et al. 2023 0.1280   0.1811     4        *
## Guidara et al. 2020    0.1782   0.2817     5        *
## Guidara et al. 2020    0.1782   0.2817     5        *
## Piatoikina et al. 2023 0.1280   0.1811     4        *
## Guidara et al. 2020    0.1782   0.2817     5        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Piatoikina et al. 2021 0.1280   0.1811     4        *
## Piatoikina et al. 2021 0.1280   0.1811     4        *
## Piatoikina et al. 2021 0.1280   0.1811     4        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Piatoikina et al. 2021 0.1280   0.1811     4        *
## Piatoikina et al. 2021 0.1280   0.1811     4        *
## Cruz et al. 2021       0.1562   0.2922     7        *
## Piatoikina et al. 2021 0.1280   0.1811     4        *
## 
## Number of treatment arms (by study):
##                        narms
## Raffa et al. 2011          2
## Altuntas et al. 2000       2
## Piatoikina et al. 2023     4
## Guidara et al. 2020        5
## Cruz et al. 2021           7
## Piatoikina et al. 2021     4
## 
## Results (random effects model):
## 
##                                        treat1                 treat2     SMD
## Raffa et al. 2011                    Negative               Positive -0.0681
## Guidara et al. 2020                   General               Positive -0.0994
## Guidara et al. 2020    Global_Cognitive_Score               Positive -0.0109
## Guidara et al. 2020                  Negative               Positive -0.0681
## Guidara et al. 2020                  Positive                  Total  0.0655
## Cruz et al. 2021                    Executive               Positive -0.0863
## Cruz et al. 2021       Global_Cognitive_Score               Positive -0.0109
## Cruz et al. 2021                     Negative               Positive -0.0681
## Cruz et al. 2021                     Positive       Processing_Speed  0.0328
## Cruz et al. 2021                     Positive          Verbal_Memory  0.0541
## Cruz et al. 2021                     Positive         Working_Memory  0.0843
## Piatoikina et al. 2023                General               Positive -0.0994
## Piatoikina et al. 2023               Negative               Positive -0.0681
## Piatoikina et al. 2023               Positive                  Total  0.0655
## Altuntas et al. 2000                 Positive                  Total  0.0655
## Guidara et al. 2020                   General               Negative -0.0312
## Guidara et al. 2020    Global_Cognitive_Score               Negative  0.0573
## Guidara et al. 2020                  Negative                  Total -0.0026
## Cruz et al. 2021                    Executive               Negative -0.0182
## Cruz et al. 2021       Global_Cognitive_Score               Negative  0.0573
## Cruz et al. 2021                     Negative       Processing_Speed -0.0354
## Cruz et al. 2021                     Negative          Verbal_Memory -0.0141
## Cruz et al. 2021                     Negative         Working_Memory  0.0162
## Piatoikina et al. 2023                General               Negative -0.0312
## Piatoikina et al. 2023               Negative                  Total -0.0026
## Guidara et al. 2020                   General Global_Cognitive_Score -0.0885
## Guidara et al. 2020                   General                  Total -0.0339
## Piatoikina et al. 2023                General                  Total -0.0339
## Guidara et al. 2020    Global_Cognitive_Score                  Total  0.0546
## Cruz et al. 2021                    Executive         Working_Memory -0.0020
## Cruz et al. 2021       Global_Cognitive_Score         Working_Memory  0.0734
## Cruz et al. 2021             Processing_Speed         Working_Memory  0.0515
## Cruz et al. 2021                Verbal_Memory         Working_Memory  0.0302
## Piatoikina et al. 2021              Executive         Working_Memory -0.0020
## Piatoikina et al. 2021       Processing_Speed         Working_Memory  0.0515
## Piatoikina et al. 2021          Verbal_Memory         Working_Memory  0.0302
## Cruz et al. 2021                    Executive Global_Cognitive_Score -0.0754
## Cruz et al. 2021       Global_Cognitive_Score       Processing_Speed  0.0219
## Cruz et al. 2021       Global_Cognitive_Score          Verbal_Memory  0.0432
## Cruz et al. 2021                    Executive       Processing_Speed -0.0535
## Cruz et al. 2021                    Executive          Verbal_Memory -0.0323
## Piatoikina et al. 2021              Executive       Processing_Speed -0.0535
## Piatoikina et al. 2021              Executive          Verbal_Memory -0.0323
## Cruz et al. 2021             Processing_Speed          Verbal_Memory  0.0213
## Piatoikina et al. 2021       Processing_Speed          Verbal_Memory  0.0213
##                                   95%-CI
## Raffa et al. 2011      [-0.2291; 0.0928]
## Guidara et al. 2020    [-0.2887; 0.0899]
## Guidara et al. 2020    [-0.2201; 0.1983]
## Guidara et al. 2020    [-0.2291; 0.0928]
## Guidara et al. 2020    [-0.1091; 0.2401]
## Cruz et al. 2021       [-0.3143; 0.1417]
## Cruz et al. 2021       [-0.2201; 0.1983]
## Cruz et al. 2021       [-0.2291; 0.0928]
## Cruz et al. 2021       [-0.1953; 0.2608]
## Cruz et al. 2021       [-0.1740; 0.2821]
## Cruz et al. 2021       [-0.1437; 0.3123]
## Piatoikina et al. 2023 [-0.2887; 0.0899]
## Piatoikina et al. 2023 [-0.2291; 0.0928]
## Piatoikina et al. 2023 [-0.1091; 0.2401]
## Altuntas et al. 2000   [-0.1091; 0.2401]
## Guidara et al. 2020    [-0.2238; 0.1613]
## Guidara et al. 2020    [-0.1534; 0.2680]
## Guidara et al. 2020    [-0.1882; 0.1829]
## Cruz et al. 2021       [-0.2467; 0.2103]
## Cruz et al. 2021       [-0.1534; 0.2680]
## Cruz et al. 2021       [-0.2638; 0.1931]
## Cruz et al. 2021       [-0.2426; 0.2144]
## Cruz et al. 2021       [-0.2123; 0.2447]
## Piatoikina et al. 2023 [-0.2238; 0.1613]
## Piatoikina et al. 2023 [-0.1882; 0.1829]
## Guidara et al. 2020    [-0.3302; 0.1532]
## Guidara et al. 2020    [-0.2325; 0.1647]
## Piatoikina et al. 2023 [-0.2325; 0.1647]
## Guidara et al. 2020    [-0.1807; 0.2899]
## Cruz et al. 2021       [-0.1961; 0.1921]
## Cruz et al. 2021       [-0.1678; 0.3146]
## Cruz et al. 2021       [-0.1426; 0.2456]
## Cruz et al. 2021       [-0.1638; 0.2243]
## Piatoikina et al. 2021 [-0.1961; 0.1921]
## Piatoikina et al. 2021 [-0.1426; 0.2456]
## Piatoikina et al. 2021 [-0.1638; 0.2243]
## Cruz et al. 2021       [-0.3166; 0.1657]
## Cruz et al. 2021       [-0.2193; 0.2631]
## Cruz et al. 2021       [-0.1980; 0.2843]
## Cruz et al. 2021       [-0.2476; 0.1405]
## Cruz et al. 2021       [-0.2263; 0.1618]
## Piatoikina et al. 2021 [-0.2476; 0.1405]
## Piatoikina et al. 2021 [-0.2263; 0.1618]
## Cruz et al. 2021       [-0.1728; 0.2153]
## Piatoikina et al. 2021 [-0.1728; 0.2153]
## 
## Number of studies: k = 6
## Number of pairwise comparisons: m = 45
## Number of treatments: n = 9
## Number of designs: d = 6
## 
## Random effects model
## 
## Treatment estimate (sm = 'SMD', comparison: other treatments vs 'Executive'):
##                            SMD            95%-CI     z p-value
## Executive                    .                 .     .       .
## General                -0.0131 [-0.2824; 0.2563] -0.10  0.9242
## Global_Cognitive_Score  0.0754 [-0.1657; 0.3166]  0.61  0.5399
## Negative                0.0182 [-0.2103; 0.2467]  0.16  0.8762
## Positive                0.0863 [-0.1417; 0.3143]  0.74  0.4582
## Processing_Speed        0.0535 [-0.1405; 0.2476]  0.54  0.5888
## Total                   0.0208 [-0.2416; 0.2832]  0.16  0.8765
## Verbal_Memory           0.0323 [-0.1618; 0.2263]  0.33  0.7446
## Working_Memory          0.0020 [-0.1921; 0.1961]  0.02  0.9838
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 60.2%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                   Q d.f. p-value
## Total           9.6   10  0.4765
## Within designs  0.0    0      --
## Between designs 9.6   10  0.4765
## 
## Details of network meta-analysis methods:
## - Frequentist graph-theoretical approach
## - DerSimonian-Laird estimator for tau^2
## - Calculation of I^2 based on Q

## 
## === Network Meta-Analysis for Measurement: GSHt ===
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                                               treat1                 treat2
## Raffa et al. 2011                           Negative               Positive
## Tsai et al. 2013                            Negative               Positive
## Tsai et al. 2013                            Positive                  Total
## Nucifora et al. 2017                         General               Positive
## Nucifora et al. 2017          Global_Cognitive_Score               Positive
## Nucifora et al. 2017                        Negative               Positive
## Nucifora et al. 2017                        Positive                  Total
## Hendouei et al. 2018                         General               Positive
## Hendouei et al. 2018                        Negative               Positive
## Hendouei et al. 2018                        Positive                  Total
## Hendouei et al. 2018*                        General               Positive
## Hendouei et al. 2018*                       Negative               Positive
## Hendouei et al. 2018*                       Positive                  Total
## Hendouei et al. 2018**                       General               Positive
## Hendouei et al. 2018**                      Negative               Positive
## Hendouei et al. 2018**                      Positive                  Total
## Chien et al. 2020                           Negative               Positive
## Chien et al. 2020*                          Negative               Positive
## Coughlin et al. 2021           Cognitive_Flexibility               Positive
## Coughlin et al. 2021                       Executive               Positive
## Coughlin et al. 2021          Global_Cognitive_Score               Positive
## Coughlin et al. 2021                        Negative               Positive
## Coughlin et al. 2021                        Positive       Processing_Speed
## Gares-Caballer et al. 2022                       CGI               Positive
## Gares-Caballer et al. 2022                 Executive               Positive
## Gares-Caballer et al. 2022                   General               Positive
## Gares-Caballer et al. 2022    Global_Cognitive_Score               Positive
## Gares-Caballer et al. 2022                  Negative               Positive
## Gares-Caballer et al. 2022                  Positive       Processing_Speed
## Lin et al. 2023 (N=92)         Cognitive_Flexibility               Positive
## Lin et al. 2023 (N=92)                   Functioning               Positive
## Lin et al. 2023 (N=92)                       General               Positive
## Lin et al. 2023 (N=92)                      Negative               Positive
## Lin et al. 2023 (N=92)                      Positive       Processing_Speed
## Lin et al. 2023 (N=92)                      Positive                  Total
## Lin et al. 2023 (N=92)                      Positive         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility               Positive
## Lin et al. 2023 (N=219)                  Functioning               Positive
## Lin et al. 2023 (N=219)                      General               Positive
## Lin et al. 2023 (N=219)                     Negative               Positive
## Lin et al. 2023 (N=219)                     Positive       Processing_Speed
## Lin et al. 2023 (N=219)                     Positive                  Total
## Lin et al. 2023 (N=219)                     Positive         Working_Memory
## Fathy et al. 2015                           Negative               Positive
## Kizilpinar et al. 2023                       General               Positive
## Kizilpinar et al. 2023                      Negative               Positive
## Kizilpinar et al. 2023                      Positive                  Total
## Tsai et al. 2013                            Negative                  Total
## Nucifora et al. 2017                         General               Negative
## Nucifora et al. 2017          Global_Cognitive_Score               Negative
## Nucifora et al. 2017                        Negative                  Total
## Hendouei et al. 2018                         General               Negative
## Hendouei et al. 2018                        Negative                  Total
## Hendouei et al. 2018*                        General               Negative
## Hendouei et al. 2018*                       Negative                  Total
## Hendouei et al. 2018**                       General               Negative
## Hendouei et al. 2018**                      Negative                  Total
## Coughlin et al. 2021           Cognitive_Flexibility               Negative
## Coughlin et al. 2021                       Executive               Negative
## Coughlin et al. 2021          Global_Cognitive_Score               Negative
## Coughlin et al. 2021                        Negative       Processing_Speed
## Gares-Caballer et al. 2022                       CGI               Negative
## Gares-Caballer et al. 2022                 Executive               Negative
## Gares-Caballer et al. 2022                   General               Negative
## Gares-Caballer et al. 2022    Global_Cognitive_Score               Negative
## Gares-Caballer et al. 2022                  Negative       Processing_Speed
## Lin et al. 2023 (N=92)         Cognitive_Flexibility               Negative
## Lin et al. 2023 (N=92)                   Functioning               Negative
## Lin et al. 2023 (N=92)                       General               Negative
## Lin et al. 2023 (N=92)                      Negative       Processing_Speed
## Lin et al. 2023 (N=92)                      Negative                  Total
## Lin et al. 2023 (N=92)                      Negative         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility               Negative
## Lin et al. 2023 (N=219)                  Functioning               Negative
## Lin et al. 2023 (N=219)                      General               Negative
## Lin et al. 2023 (N=219)                     Negative       Processing_Speed
## Lin et al. 2023 (N=219)                     Negative                  Total
## Lin et al. 2023 (N=219)                     Negative         Working_Memory
## Kizilpinar et al. 2023                       General               Negative
## Kizilpinar et al. 2023                      Negative                  Total
## Nucifora et al. 2017                         General Global_Cognitive_Score
## Nucifora et al. 2017                         General                  Total
## Hendouei et al. 2018                         General                  Total
## Hendouei et al. 2018*                        General                  Total
## Hendouei et al. 2018**                       General                  Total
## Gares-Caballer et al. 2022                       CGI                General
## Gares-Caballer et al. 2022                 Executive                General
## Gares-Caballer et al. 2022                   General Global_Cognitive_Score
## Gares-Caballer et al. 2022                   General       Processing_Speed
## Lin et al. 2023 (N=92)         Cognitive_Flexibility                General
## Lin et al. 2023 (N=92)                   Functioning                General
## Lin et al. 2023 (N=92)                       General       Processing_Speed
## Lin et al. 2023 (N=92)                       General                  Total
## Lin et al. 2023 (N=92)                       General         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility                General
## Lin et al. 2023 (N=219)                  Functioning                General
## Lin et al. 2023 (N=219)                      General       Processing_Speed
## Lin et al. 2023 (N=219)                      General                  Total
## Lin et al. 2023 (N=219)                      General         Working_Memory
## Kizilpinar et al. 2023                       General                  Total
## Nucifora et al. 2017          Global_Cognitive_Score                  Total
## Lin et al. 2023 (N=92)         Cognitive_Flexibility                  Total
## Lin et al. 2023 (N=92)                   Functioning                  Total
## Lin et al. 2023 (N=92)              Processing_Speed                  Total
## Lin et al. 2023 (N=92)                         Total         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility                  Total
## Lin et al. 2023 (N=219)                  Functioning                  Total
## Lin et al. 2023 (N=219)             Processing_Speed                  Total
## Lin et al. 2023 (N=219)                        Total         Working_Memory
## Gonzalez-Liencres et al. 2014  Cognitive_Flexibility              Executive
## Gonzalez-Liencres et al. 2014              Executive       Processing_Speed
## Coughlin et al. 2021           Cognitive_Flexibility              Executive
## Coughlin et al. 2021                       Executive Global_Cognitive_Score
## Coughlin et al. 2021                       Executive       Processing_Speed
## Gares-Caballer et al. 2022                       CGI              Executive
## Gares-Caballer et al. 2022                 Executive Global_Cognitive_Score
## Gares-Caballer et al. 2022                 Executive       Processing_Speed
## Coughlin et al. 2021           Cognitive_Flexibility Global_Cognitive_Score
## Coughlin et al. 2021          Global_Cognitive_Score       Processing_Speed
## Gares-Caballer et al. 2022                       CGI Global_Cognitive_Score
## Gares-Caballer et al. 2022    Global_Cognitive_Score       Processing_Speed
## Gonzalez-Liencres et al. 2014  Cognitive_Flexibility       Processing_Speed
## Coughlin et al. 2021           Cognitive_Flexibility       Processing_Speed
## Gares-Caballer et al. 2022                       CGI       Processing_Speed
## Lin et al. 2023 (N=92)         Cognitive_Flexibility       Processing_Speed
## Lin et al. 2023 (N=92)                   Functioning       Processing_Speed
## Lin et al. 2023 (N=92)              Processing_Speed         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility       Processing_Speed
## Lin et al. 2023 (N=219)                  Functioning       Processing_Speed
## Lin et al. 2023 (N=219)             Processing_Speed         Working_Memory
## Lin et al. 2023 (N=92)         Cognitive_Flexibility            Functioning
## Lin et al. 2023 (N=92)         Cognitive_Flexibility         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility            Functioning
## Lin et al. 2023 (N=219)        Cognitive_Flexibility         Working_Memory
## Lin et al. 2023 (N=92)                   Functioning         Working_Memory
## Lin et al. 2023 (N=219)                  Functioning         Working_Memory
##                                    TE   seTE seTE.adj narms multiarm
## Raffa et al. 2011             -0.5693 0.3162   0.3396     2         
## Tsai et al. 2013              -0.0504 0.2294   0.3193     3        *
## Tsai et al. 2013               0.1253 0.2294   0.3193     3        *
## Nucifora et al. 2017           0.1075 0.2041   0.3775     5        *
## Nucifora et al. 2017           0.6258 0.2041   0.3775     5        *
## Nucifora et al. 2017           0.1699 0.2041   0.3775     5        *
## Nucifora et al. 2017          -0.0541 0.2041   0.3775     5        *
## Hendouei et al. 2018          -0.0000 0.2540   0.3996     4        *
## Hendouei et al. 2018           0.1705 0.2540   0.3996     4        *
## Hendouei et al. 2018           0.0000 0.2540   0.3996     4        *
## Hendouei et al. 2018*          0.1024 0.2540   0.3996     4        *
## Hendouei et al. 2018*          0.1024 0.2540   0.3996     4        *
## Hendouei et al. 2018*         -0.1024 0.2540   0.3996     4        *
## Hendouei et al. 2018**        -0.0000 0.2626   0.4106     4        *
## Hendouei et al. 2018**        -0.3031 0.2626   0.4106     4        *
## Hendouei et al. 2018**         0.1024 0.2626   0.4106     4        *
## Chien et al. 2020             -0.0300 0.2236   0.2556     2         
## Chien et al. 2020*            -0.3953 0.3536   0.3746     2         
## Coughlin et al. 2021           0.1531 0.3086   0.5759     6        *
## Coughlin et al. 2021           0.6979 0.3086   0.5759     6        *
## Coughlin et al. 2021           0.8607 0.3086   0.5759     6        *
## Coughlin et al. 2021           0.1531 0.3086   0.5759     6        *
## Coughlin et al. 2021          -0.6488 0.3086   0.5759     6        *
## Gares-Caballer et al. 2022    -0.0201 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.4837 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.0611 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.4142 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.0701 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022    -0.2732 0.2722   0.5594     7        *
## Lin et al. 2023 (N=92)        -0.1372 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)        -0.1856 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.0679 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)        -0.1052 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.2519 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.0101 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.1724 0.1499   0.3889     8        *
## Lin et al. 2023 (N=219)       -0.0171 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.0050 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.1704 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.1262 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.0261 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.1182 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.0981 0.0962   0.3136     8        *
## Fathy et al. 2015             -1.4399 0.2722   0.2990     2         
## Kizilpinar et al. 2023         0.1769 0.2949   0.4523     4        *
## Kizilpinar et al. 2023         0.1019 0.2949   0.4523     4        *
## Kizilpinar et al. 2023        -0.1559 0.2949   0.4523     4        *
## Tsai et al. 2013               0.0749 0.2294   0.3193     3        *
## Nucifora et al. 2017          -0.0624 0.2041   0.3775     5        *
## Nucifora et al. 2017           0.4559 0.2041   0.3775     5        *
## Nucifora et al. 2017           0.1158 0.2041   0.3775     5        *
## Hendouei et al. 2018          -0.1705 0.2540   0.3996     4        *
## Hendouei et al. 2018           0.1705 0.2540   0.3996     4        *
## Hendouei et al. 2018*         -0.0000 0.2540   0.3996     4        *
## Hendouei et al. 2018*          0.0000 0.2540   0.3996     4        *
## Hendouei et al. 2018**         0.3031 0.2626   0.4106     4        *
## Hendouei et al. 2018**        -0.2007 0.2626   0.4106     4        *
## Coughlin et al. 2021          -0.0000 0.3086   0.5759     6        *
## Coughlin et al. 2021           0.5448 0.3086   0.5759     6        *
## Coughlin et al. 2021           0.7076 0.3086   0.5759     6        *
## Coughlin et al. 2021          -0.4957 0.3086   0.5759     6        *
## Gares-Caballer et al. 2022    -0.0902 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.4136 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022    -0.0090 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.3441 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022    -0.2032 0.2722   0.5594     7        *
## Lin et al. 2023 (N=92)        -0.0321 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)        -0.0804 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.1730 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.1467 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)        -0.0951 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.0673 0.1499   0.3889     8        *
## Lin et al. 2023 (N=219)        0.1091 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.1312 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.0443 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.1001 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.0080 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.0280 0.0962   0.3136     8        *
## Kizilpinar et al. 2023         0.0750 0.2949   0.4523     4        *
## Kizilpinar et al. 2023        -0.0540 0.2949   0.4523     4        *
## Nucifora et al. 2017          -0.5183 0.2041   0.3775     5        *
## Nucifora et al. 2017           0.0534 0.2041   0.3775     5        *
## Hendouei et al. 2018           0.0000 0.2540   0.3996     4        *
## Hendouei et al. 2018*          0.0000 0.2540   0.3996     4        *
## Hendouei et al. 2018**         0.1024 0.2626   0.4106     4        *
## Gares-Caballer et al. 2022    -0.0812 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.4226 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022    -0.3531 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022    -0.2122 0.2722   0.5594     7        *
## Lin et al. 2023 (N=92)        -0.2051 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)        -0.2534 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.3198 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.0779 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.2403 0.1499   0.3889     8        *
## Lin et al. 2023 (N=219)        0.1534 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.1755 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.1444 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.0523 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.0723 0.0962   0.3136     8        *
## Kizilpinar et al. 2023         0.0210 0.2949   0.4523     4        *
## Nucifora et al. 2017           0.5717 0.2041   0.3775     5        *
## Lin et al. 2023 (N=92)        -0.1272 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)        -0.1755 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)        -0.2418 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.1624 0.1499   0.3889     8        *
## Lin et al. 2023 (N=219)        0.1011 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.1232 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.0921 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)       -0.0200 0.0962   0.3136     8        *
## Gonzalez-Liencres et al. 2014  0.0300 0.2294   0.3193     3        *
## Gonzalez-Liencres et al. 2014  0.2923 0.2294   0.3193     3        *
## Coughlin et al. 2021          -0.5448 0.3086   0.5759     6        *
## Coughlin et al. 2021          -0.1628 0.3086   0.5759     6        *
## Coughlin et al. 2021           0.0491 0.3086   0.5759     6        *
## Gares-Caballer et al. 2022    -0.5038 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.0696 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.2105 0.2722   0.5594     7        *
## Coughlin et al. 2021          -0.7076 0.3086   0.5759     6        *
## Coughlin et al. 2021           0.2119 0.3086   0.5759     6        *
## Gares-Caballer et al. 2022    -0.4343 0.2722   0.5594     7        *
## Gares-Caballer et al. 2022     0.1409 0.2722   0.5594     7        *
## Gonzalez-Liencres et al. 2014  0.3223 0.2294   0.3193     3        *
## Coughlin et al. 2021          -0.4957 0.3086   0.5759     6        *
## Gares-Caballer et al. 2022    -0.2933 0.2722   0.5594     7        *
## Lin et al. 2023 (N=92)         0.1147 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.0663 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)        -0.0794 0.1499   0.3889     8        *
## Lin et al. 2023 (N=219)        0.0090 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.0311 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.0720 0.0962   0.3136     8        *
## Lin et al. 2023 (N=92)         0.0483 0.1499   0.3889     8        *
## Lin et al. 2023 (N=92)         0.0352 0.1499   0.3889     8        *
## Lin et al. 2023 (N=219)       -0.0221 0.0962   0.3136     8        *
## Lin et al. 2023 (N=219)        0.0811 0.0962   0.3136     8        *
## Lin et al. 2023 (N=92)        -0.0131 0.1499   0.3889     8        *
## Lin et al. 2023 (N=219)        0.1032 0.0962   0.3136     8        *
## 
## Number of treatment arms (by study):
##                               narms
## Raffa et al. 2011                 2
## Tsai et al. 2013                  3
## Chien et al. 2020                 2
## Chien et al. 2020*                2
## Fathy et al. 2015                 2
## Hendouei et al. 2018              4
## Hendouei et al. 2018*             4
## Hendouei et al. 2018**            4
## Kizilpinar et al. 2023            4
## Nucifora et al. 2017              5
## Gonzalez-Liencres et al. 2014     3
## Coughlin et al. 2021              6
## Gares-Caballer et al. 2022        7
## Lin et al. 2023 (N=92)            8
## Lin et al. 2023 (N=219)           8
## 
## Results (random effects model):
## 
##                                               treat1                 treat2
## Raffa et al. 2011                           Negative               Positive
## Tsai et al. 2013                            Negative               Positive
## Tsai et al. 2013                            Positive                  Total
## Nucifora et al. 2017                         General               Positive
## Nucifora et al. 2017          Global_Cognitive_Score               Positive
## Nucifora et al. 2017                        Negative               Positive
## Nucifora et al. 2017                        Positive                  Total
## Hendouei et al. 2018                         General               Positive
## Hendouei et al. 2018                        Negative               Positive
## Hendouei et al. 2018                        Positive                  Total
## Hendouei et al. 2018*                        General               Positive
## Hendouei et al. 2018*                       Negative               Positive
## Hendouei et al. 2018*                       Positive                  Total
## Hendouei et al. 2018**                       General               Positive
## Hendouei et al. 2018**                      Negative               Positive
## Hendouei et al. 2018**                      Positive                  Total
## Chien et al. 2020                           Negative               Positive
## Chien et al. 2020*                          Negative               Positive
## Coughlin et al. 2021           Cognitive_Flexibility               Positive
## Coughlin et al. 2021                       Executive               Positive
## Coughlin et al. 2021          Global_Cognitive_Score               Positive
## Coughlin et al. 2021                        Negative               Positive
## Coughlin et al. 2021                        Positive       Processing_Speed
## Gares-Caballer et al. 2022                       CGI               Positive
## Gares-Caballer et al. 2022                 Executive               Positive
## Gares-Caballer et al. 2022                   General               Positive
## Gares-Caballer et al. 2022    Global_Cognitive_Score               Positive
## Gares-Caballer et al. 2022                  Negative               Positive
## Gares-Caballer et al. 2022                  Positive       Processing_Speed
## Lin et al. 2023 (N=92)         Cognitive_Flexibility               Positive
## Lin et al. 2023 (N=92)                   Functioning               Positive
## Lin et al. 2023 (N=92)                       General               Positive
## Lin et al. 2023 (N=92)                      Negative               Positive
## Lin et al. 2023 (N=92)                      Positive       Processing_Speed
## Lin et al. 2023 (N=92)                      Positive                  Total
## Lin et al. 2023 (N=92)                      Positive         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility               Positive
## Lin et al. 2023 (N=219)                  Functioning               Positive
## Lin et al. 2023 (N=219)                      General               Positive
## Lin et al. 2023 (N=219)                     Negative               Positive
## Lin et al. 2023 (N=219)                     Positive       Processing_Speed
## Lin et al. 2023 (N=219)                     Positive                  Total
## Lin et al. 2023 (N=219)                     Positive         Working_Memory
## Fathy et al. 2015                           Negative               Positive
## Kizilpinar et al. 2023                       General               Positive
## Kizilpinar et al. 2023                      Negative               Positive
## Kizilpinar et al. 2023                      Positive                  Total
## Tsai et al. 2013                            Negative                  Total
## Nucifora et al. 2017                         General               Negative
## Nucifora et al. 2017          Global_Cognitive_Score               Negative
## Nucifora et al. 2017                        Negative                  Total
## Hendouei et al. 2018                         General               Negative
## Hendouei et al. 2018                        Negative                  Total
## Hendouei et al. 2018*                        General               Negative
## Hendouei et al. 2018*                       Negative                  Total
## Hendouei et al. 2018**                       General               Negative
## Hendouei et al. 2018**                      Negative                  Total
## Coughlin et al. 2021           Cognitive_Flexibility               Negative
## Coughlin et al. 2021                       Executive               Negative
## Coughlin et al. 2021          Global_Cognitive_Score               Negative
## Coughlin et al. 2021                        Negative       Processing_Speed
## Gares-Caballer et al. 2022                       CGI               Negative
## Gares-Caballer et al. 2022                 Executive               Negative
## Gares-Caballer et al. 2022                   General               Negative
## Gares-Caballer et al. 2022    Global_Cognitive_Score               Negative
## Gares-Caballer et al. 2022                  Negative       Processing_Speed
## Lin et al. 2023 (N=92)         Cognitive_Flexibility               Negative
## Lin et al. 2023 (N=92)                   Functioning               Negative
## Lin et al. 2023 (N=92)                       General               Negative
## Lin et al. 2023 (N=92)                      Negative       Processing_Speed
## Lin et al. 2023 (N=92)                      Negative                  Total
## Lin et al. 2023 (N=92)                      Negative         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility               Negative
## Lin et al. 2023 (N=219)                  Functioning               Negative
## Lin et al. 2023 (N=219)                      General               Negative
## Lin et al. 2023 (N=219)                     Negative       Processing_Speed
## Lin et al. 2023 (N=219)                     Negative                  Total
## Lin et al. 2023 (N=219)                     Negative         Working_Memory
## Kizilpinar et al. 2023                       General               Negative
## Kizilpinar et al. 2023                      Negative                  Total
## Nucifora et al. 2017                         General Global_Cognitive_Score
## Nucifora et al. 2017                         General                  Total
## Hendouei et al. 2018                         General                  Total
## Hendouei et al. 2018*                        General                  Total
## Hendouei et al. 2018**                       General                  Total
## Gares-Caballer et al. 2022                       CGI                General
## Gares-Caballer et al. 2022                 Executive                General
## Gares-Caballer et al. 2022                   General Global_Cognitive_Score
## Gares-Caballer et al. 2022                   General       Processing_Speed
## Lin et al. 2023 (N=92)         Cognitive_Flexibility                General
## Lin et al. 2023 (N=92)                   Functioning                General
## Lin et al. 2023 (N=92)                       General       Processing_Speed
## Lin et al. 2023 (N=92)                       General                  Total
## Lin et al. 2023 (N=92)                       General         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility                General
## Lin et al. 2023 (N=219)                  Functioning                General
## Lin et al. 2023 (N=219)                      General       Processing_Speed
## Lin et al. 2023 (N=219)                      General                  Total
## Lin et al. 2023 (N=219)                      General         Working_Memory
## Kizilpinar et al. 2023                       General                  Total
## Nucifora et al. 2017          Global_Cognitive_Score                  Total
## Lin et al. 2023 (N=92)         Cognitive_Flexibility                  Total
## Lin et al. 2023 (N=92)                   Functioning                  Total
## Lin et al. 2023 (N=92)              Processing_Speed                  Total
## Lin et al. 2023 (N=92)                         Total         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility                  Total
## Lin et al. 2023 (N=219)                  Functioning                  Total
## Lin et al. 2023 (N=219)             Processing_Speed                  Total
## Lin et al. 2023 (N=219)                        Total         Working_Memory
## Gonzalez-Liencres et al. 2014  Cognitive_Flexibility              Executive
## Gonzalez-Liencres et al. 2014              Executive       Processing_Speed
## Coughlin et al. 2021           Cognitive_Flexibility              Executive
## Coughlin et al. 2021                       Executive Global_Cognitive_Score
## Coughlin et al. 2021                       Executive       Processing_Speed
## Gares-Caballer et al. 2022                       CGI              Executive
## Gares-Caballer et al. 2022                 Executive Global_Cognitive_Score
## Gares-Caballer et al. 2022                 Executive       Processing_Speed
## Coughlin et al. 2021           Cognitive_Flexibility Global_Cognitive_Score
## Coughlin et al. 2021          Global_Cognitive_Score       Processing_Speed
## Gares-Caballer et al. 2022                       CGI Global_Cognitive_Score
## Gares-Caballer et al. 2022    Global_Cognitive_Score       Processing_Speed
## Gonzalez-Liencres et al. 2014  Cognitive_Flexibility       Processing_Speed
## Coughlin et al. 2021           Cognitive_Flexibility       Processing_Speed
## Gares-Caballer et al. 2022                       CGI       Processing_Speed
## Lin et al. 2023 (N=92)         Cognitive_Flexibility       Processing_Speed
## Lin et al. 2023 (N=92)                   Functioning       Processing_Speed
## Lin et al. 2023 (N=92)              Processing_Speed         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility       Processing_Speed
## Lin et al. 2023 (N=219)                  Functioning       Processing_Speed
## Lin et al. 2023 (N=219)             Processing_Speed         Working_Memory
## Lin et al. 2023 (N=92)         Cognitive_Flexibility            Functioning
## Lin et al. 2023 (N=92)         Cognitive_Flexibility         Working_Memory
## Lin et al. 2023 (N=219)        Cognitive_Flexibility            Functioning
## Lin et al. 2023 (N=219)        Cognitive_Flexibility         Working_Memory
## Lin et al. 2023 (N=92)                   Functioning         Working_Memory
## Lin et al. 2023 (N=219)                  Functioning         Working_Memory
##                                   SMD             95%-CI
## Raffa et al. 2011             -0.1295 [-0.2652;  0.0062]
## Tsai et al. 2013              -0.1295 [-0.2652;  0.0062]
## Tsai et al. 2013               0.0638 [-0.0907;  0.2184]
## Nucifora et al. 2017          -0.0414 [-0.1975;  0.1147]
## Nucifora et al. 2017           0.4302 [ 0.1646;  0.6959]
## Nucifora et al. 2017          -0.1295 [-0.2652;  0.0062]
## Nucifora et al. 2017           0.0638 [-0.0907;  0.2184]
## Hendouei et al. 2018          -0.0414 [-0.1975;  0.1147]
## Hendouei et al. 2018          -0.1295 [-0.2652;  0.0062]
## Hendouei et al. 2018           0.0638 [-0.0907;  0.2184]
## Hendouei et al. 2018*         -0.0414 [-0.1975;  0.1147]
## Hendouei et al. 2018*         -0.1295 [-0.2652;  0.0062]
## Hendouei et al. 2018*          0.0638 [-0.0907;  0.2184]
## Hendouei et al. 2018**        -0.0414 [-0.1975;  0.1147]
## Hendouei et al. 2018**        -0.1295 [-0.2652;  0.0062]
## Hendouei et al. 2018**         0.0638 [-0.0907;  0.2184]
## Chien et al. 2020             -0.1295 [-0.2652;  0.0062]
## Chien et al. 2020*            -0.1295 [-0.2652;  0.0062]
## Coughlin et al. 2021          -0.0127 [-0.2026;  0.1772]
## Coughlin et al. 2021           0.2769 [-0.0150;  0.5688]
## Coughlin et al. 2021           0.4302 [ 0.1646;  0.6959]
## Coughlin et al. 2021          -0.1295 [-0.2652;  0.0062]
## Coughlin et al. 2021           0.0318 [-0.1502;  0.2137]
## Gares-Caballer et al. 2022    -0.1531 [-0.6146;  0.3085]
## Gares-Caballer et al. 2022     0.2769 [-0.0150;  0.5688]
## Gares-Caballer et al. 2022    -0.0414 [-0.1975;  0.1147]
## Gares-Caballer et al. 2022     0.4302 [ 0.1646;  0.6959]
## Gares-Caballer et al. 2022    -0.1295 [-0.2652;  0.0062]
## Gares-Caballer et al. 2022     0.0318 [-0.1502;  0.2137]
## Lin et al. 2023 (N=92)        -0.0127 [-0.2026;  0.1772]
## Lin et al. 2023 (N=92)        -0.0417 [-0.2488;  0.1654]
## Lin et al. 2023 (N=92)        -0.0414 [-0.1975;  0.1147]
## Lin et al. 2023 (N=92)        -0.1295 [-0.2652;  0.0062]
## Lin et al. 2023 (N=92)         0.0318 [-0.1502;  0.2137]
## Lin et al. 2023 (N=92)         0.0638 [-0.0907;  0.2184]
## Lin et al. 2023 (N=92)         0.0990 [-0.1080;  0.3061]
## Lin et al. 2023 (N=219)       -0.0127 [-0.2026;  0.1772]
## Lin et al. 2023 (N=219)       -0.0417 [-0.2488;  0.1654]
## Lin et al. 2023 (N=219)       -0.0414 [-0.1975;  0.1147]
## Lin et al. 2023 (N=219)       -0.1295 [-0.2652;  0.0062]
## Lin et al. 2023 (N=219)        0.0318 [-0.1502;  0.2137]
## Lin et al. 2023 (N=219)        0.0638 [-0.0907;  0.2184]
## Lin et al. 2023 (N=219)        0.0990 [-0.1080;  0.3061]
## Fathy et al. 2015             -0.1295 [-0.2652;  0.0062]
## Kizilpinar et al. 2023        -0.0414 [-0.1975;  0.1147]
## Kizilpinar et al. 2023        -0.1295 [-0.2652;  0.0062]
## Kizilpinar et al. 2023         0.0638 [-0.0907;  0.2184]
## Tsai et al. 2013              -0.0656 [-0.2202;  0.0889]
## Nucifora et al. 2017           0.0880 [-0.0681;  0.2442]
## Nucifora et al. 2017           0.5597 [ 0.2940;  0.8254]
## Nucifora et al. 2017          -0.0656 [-0.2202;  0.0889]
## Hendouei et al. 2018           0.0880 [-0.0681;  0.2442]
## Hendouei et al. 2018          -0.0656 [-0.2202;  0.0889]
## Hendouei et al. 2018*          0.0880 [-0.0681;  0.2442]
## Hendouei et al. 2018*         -0.0656 [-0.2202;  0.0889]
## Hendouei et al. 2018**         0.0880 [-0.0681;  0.2442]
## Hendouei et al. 2018**        -0.0656 [-0.2202;  0.0889]
## Coughlin et al. 2021           0.1168 [-0.0731;  0.3067]
## Coughlin et al. 2021           0.4064 [ 0.1145;  0.6983]
## Coughlin et al. 2021           0.5597 [ 0.2940;  0.8254]
## Coughlin et al. 2021          -0.0977 [-0.2797;  0.0843]
## Gares-Caballer et al. 2022    -0.0236 [-0.4851;  0.4380]
## Gares-Caballer et al. 2022     0.4064 [ 0.1145;  0.6983]
## Gares-Caballer et al. 2022     0.0880 [-0.0681;  0.2442]
## Gares-Caballer et al. 2022     0.5597 [ 0.2940;  0.8254]
## Gares-Caballer et al. 2022    -0.0977 [-0.2797;  0.0843]
## Lin et al. 2023 (N=92)         0.1168 [-0.0731;  0.3067]
## Lin et al. 2023 (N=92)         0.0878 [-0.1193;  0.2948]
## Lin et al. 2023 (N=92)         0.0880 [-0.0681;  0.2442]
## Lin et al. 2023 (N=92)        -0.0977 [-0.2797;  0.0843]
## Lin et al. 2023 (N=92)        -0.0656 [-0.2202;  0.0889]
## Lin et al. 2023 (N=92)        -0.0304 [-0.2375;  0.1766]
## Lin et al. 2023 (N=219)        0.1168 [-0.0731;  0.3067]
## Lin et al. 2023 (N=219)        0.0878 [-0.1193;  0.2948]
## Lin et al. 2023 (N=219)        0.0880 [-0.0681;  0.2442]
## Lin et al. 2023 (N=219)       -0.0977 [-0.2797;  0.0843]
## Lin et al. 2023 (N=219)       -0.0656 [-0.2202;  0.0889]
## Lin et al. 2023 (N=219)       -0.0304 [-0.2375;  0.1766]
## Kizilpinar et al. 2023         0.0880 [-0.0681;  0.2442]
## Kizilpinar et al. 2023        -0.0656 [-0.2202;  0.0889]
## Nucifora et al. 2017          -0.4717 [-0.7446; -0.1987]
## Nucifora et al. 2017           0.0224 [-0.1428;  0.1876]
## Hendouei et al. 2018           0.0224 [-0.1428;  0.1876]
## Hendouei et al. 2018*          0.0224 [-0.1428;  0.1876]
## Hendouei et al. 2018**         0.0224 [-0.1428;  0.1876]
## Gares-Caballer et al. 2022    -0.1116 [-0.5763;  0.3531]
## Gares-Caballer et al. 2022     0.3183 [ 0.0189;  0.6178]
## Gares-Caballer et al. 2022    -0.4717 [-0.7446; -0.1987]
## Gares-Caballer et al. 2022    -0.0097 [-0.2004;  0.1811]
## Lin et al. 2023 (N=92)         0.0288 [-0.1696;  0.2272]
## Lin et al. 2023 (N=92)        -0.0003 [-0.2137;  0.2131]
## Lin et al. 2023 (N=92)        -0.0097 [-0.2004;  0.1811]
## Lin et al. 2023 (N=92)         0.0224 [-0.1428;  0.1876]
## Lin et al. 2023 (N=92)         0.0576 [-0.1558;  0.2710]
## Lin et al. 2023 (N=219)        0.0288 [-0.1696;  0.2272]
## Lin et al. 2023 (N=219)       -0.0003 [-0.2137;  0.2131]
## Lin et al. 2023 (N=219)       -0.0097 [-0.2004;  0.1811]
## Lin et al. 2023 (N=219)        0.0224 [-0.1428;  0.1876]
## Lin et al. 2023 (N=219)        0.0576 [-0.1558;  0.2710]
## Kizilpinar et al. 2023         0.0224 [-0.1428;  0.1876]
## Nucifora et al. 2017           0.4941 [ 0.2179;  0.7702]
## Lin et al. 2023 (N=92)         0.0512 [-0.1479;  0.2502]
## Lin et al. 2023 (N=92)         0.0221 [-0.1913;  0.2355]
## Lin et al. 2023 (N=92)         0.0321 [-0.1608;  0.2249]
## Lin et al. 2023 (N=92)         0.0352 [-0.1782;  0.2486]
## Lin et al. 2023 (N=219)        0.0512 [-0.1479;  0.2502]
## Lin et al. 2023 (N=219)        0.0221 [-0.1913;  0.2355]
## Lin et al. 2023 (N=219)        0.0321 [-0.1608;  0.2249]
## Lin et al. 2023 (N=219)        0.0352 [-0.1782;  0.2486]
## Gonzalez-Liencres et al. 2014 -0.2896 [-0.5873;  0.0081]
## Gonzalez-Liencres et al. 2014  0.3087 [ 0.0185;  0.5989]
## Coughlin et al. 2021          -0.2896 [-0.5873;  0.0081]
## Coughlin et al. 2021          -0.1533 [-0.5031;  0.1965]
## Coughlin et al. 2021           0.3087 [ 0.0185;  0.5989]
## Gares-Caballer et al. 2022    -0.4300 [-0.9322;  0.0722]
## Gares-Caballer et al. 2022    -0.1533 [-0.5031;  0.1965]
## Gares-Caballer et al. 2022     0.3087 [ 0.0185;  0.5989]
## Coughlin et al. 2021          -0.4429 [-0.7367; -0.1491]
## Coughlin et al. 2021           0.4620 [ 0.1768;  0.7471]
## Gares-Caballer et al. 2022    -0.5833 [-1.0776; -0.0890]
## Gares-Caballer et al. 2022     0.4620 [ 0.1768;  0.7471]
## Gonzalez-Liencres et al. 2014  0.0191 [-0.1819;  0.2201]
## Coughlin et al. 2021           0.0191 [-0.1819;  0.2201]
## Gares-Caballer et al. 2022    -0.1213 [-0.5894;  0.3468]
## Lin et al. 2023 (N=92)         0.0191 [-0.1819;  0.2201]
## Lin et al. 2023 (N=92)        -0.0099 [-0.2341;  0.2142]
## Lin et al. 2023 (N=92)         0.0673 [-0.1569;  0.2915]
## Lin et al. 2023 (N=219)        0.0191 [-0.1819;  0.2201]
## Lin et al. 2023 (N=219)       -0.0099 [-0.2341;  0.2142]
## Lin et al. 2023 (N=219)        0.0673 [-0.1569;  0.2915]
## Lin et al. 2023 (N=92)         0.0290 [-0.1993;  0.2574]
## Lin et al. 2023 (N=92)         0.0864 [-0.1420;  0.3147]
## Lin et al. 2023 (N=219)        0.0290 [-0.1993;  0.2574]
## Lin et al. 2023 (N=219)        0.0864 [-0.1420;  0.3147]
## Lin et al. 2023 (N=92)         0.0573 [-0.1819;  0.2966]
## Lin et al. 2023 (N=219)        0.0573 [-0.1819;  0.2966]
## 
## Number of studies: k = 15
## Number of pairwise comparisons: m = 136
## Number of treatments: n = 11
## Number of designs: d = 8
## 
## Random effects model
## 
## Treatment estimate (sm = 'SMD', comparison: other treatments vs 'CGI'):
##                           SMD            95%-CI    z p-value
## CGI                         .                 .    .       .
## Cognitive_Flexibility  0.1404 [-0.3380; 0.6188] 0.58  0.5652
## Executive              0.4300 [-0.0722; 0.9322] 1.68  0.0933
## Functioning            0.1114 [-0.3773; 0.6000] 0.45  0.6551
## General                0.1116 [-0.3531; 0.5763] 0.47  0.6378
## Global_Cognitive_Score 0.5833 [ 0.0890; 1.0776] 2.31  0.0207
## Negative               0.0236 [-0.4380; 0.4851] 0.10  0.9202
## Positive               0.1531 [-0.3085; 0.6146] 0.65  0.5157
## Processing_Speed       0.1213 [-0.3468; 0.5894] 0.51  0.6115
## Total                  0.0892 [-0.3810; 0.5595] 0.37  0.7100
## Working_Memory         0.0540 [-0.4346; 0.5427] 0.22  0.8284
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.0153; tau = 0.1238; I^2 = 29% [0.0%; 52.1%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f. p-value
## Total           54.97   39  0.0464
## Within designs  29.80   19  0.0544
## Between designs 25.16   20  0.1953
## 
## Details of network meta-analysis methods:
## - Frequentist graph-theoretical approach
## - DerSimonian-Laird estimator for tau^2
## - Calculation of I^2 based on Q

## 
## === Network Meta-Analysis for Measurement: GSSG ===
## Original data:
## 
##                     treat1   treat2      TE   seTE
## Raffa et al. 2011 Negative Positive  0.0103 0.3162
## Tao et al. 2020   Negative Positive -0.2018 0.1516
## 
## Number of treatment arms (by study):
##                   narms
## Raffa et al. 2011     2
## Tao et al. 2020       2
## 
## Results (random effects model):
## 
##                     treat1   treat2     SMD            95%-CI
## Raffa et al. 2011 Negative Positive -0.1621 [-0.4301; 0.1058]
## Tao et al. 2020   Negative Positive -0.1621 [-0.4301; 0.1058]
## 
## Number of studies: k = 2
## Number of pairwise comparisons: m = 2
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'SMD', comparison: 'Positive' vs 'Negative'):
##             SMD            95%-CI    z p-value
## Negative      .                 .    .       .
## Positive 0.1621 [-0.1058; 0.4301] 1.19  0.2357
## 
## Quantifying heterogeneity:
## tau^2 = 0; tau = 0; I^2 = 0%
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  0.37    1  0.5454
## 
## Details of network meta-analysis methods:
## - Frequentist graph-theoretical approach
## - DerSimonian-Laird estimator for tau^2
## - Calculation of I^2 based on Q

## 
## === Network Meta-Analysis for Measurement: Imaging ===
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                                        treat1           treat2      TE   seTE
## Matsuzawa et al. 2008      Ideational_Fluency         Positive  0.6731 0.2985
## Matsuzawa et al. 2008                Negative         Positive -0.2333 0.3430
## Matsuzawa et al. 2008                Positive Processing_Speed -0.3190 0.2985
## Matsuzawa et al. 2008                Positive            Total -0.0243 0.3430
## Matsuzawa et al. 2008                Positive    Verbal_Memory -0.6419 0.2985
## Reyes-Madrigal et al. 2019            General         Positive -1.8050 0.5345
## Reyes-Madrigal et al. 2019           Negative         Positive -1.5690 0.5345
## Reyes-Madrigal et al. 2019           Positive            Total  1.4982 0.5345
## Iwata et al. 2021                     General         Positive -0.0710 0.1768
## Iwata et al. 2021                    Negative         Positive  0.2313 0.1768
## Iwata et al. 2021                    Positive            Total  0.0000 0.1768
## Coughlin et al. 2021       Ideational_Fluency         Positive  0.5680 0.3922
## Coughlin et al. 2021                 Negative         Positive  0.0722 0.3922
## Coughlin et al. 2021                 Positive Processing_Speed -0.1252 0.3922
## Coughlin et al. 2021                 Positive    Verbal_Memory  0.0203 0.3922
## Lesh et al. 2021                  Functioning         Positive  0.4597 0.2582
## Lesh et al. 2021                     Negative         Positive  0.2626 0.2582
## Lesh et al. 2021                     Positive            Total  0.0293 0.2582
## Matsuzawa et al. 2008      Ideational_Fluency         Negative  0.9063 0.2985
## Matsuzawa et al. 2008                Negative Processing_Speed -0.5522 0.2985
## Matsuzawa et al. 2008                Negative            Total -0.2575 0.3430
## Matsuzawa et al. 2008                Negative    Verbal_Memory -0.8751 0.2985
## Reyes-Madrigal et al. 2019            General         Negative -0.2360 0.5345
## Reyes-Madrigal et al. 2019           Negative            Total -0.0708 0.5345
## Iwata et al. 2021                     General         Negative -0.3023 0.1768
## Iwata et al. 2021                    Negative            Total  0.2313 0.1768
## Coughlin et al. 2021       Ideational_Fluency         Negative  0.4958 0.3922
## Coughlin et al. 2021                 Negative Processing_Speed -0.0529 0.3922
## Coughlin et al. 2021                 Negative    Verbal_Memory  0.0926 0.3922
## Lesh et al. 2021                  Functioning         Negative  0.1972 0.2582
## Lesh et al. 2021                     Negative            Total  0.2918 0.2582
## Ravanfar et al. 2022              Functioning         Negative  0.8504 0.4714
## Ravanfar et al. 2022                 Negative            Total -0.0690 0.4714
## Reyes-Madrigal et al. 2019            General            Total -0.3068 0.5345
## Iwata et al. 2021                     General            Total -0.0710 0.1768
## Matsuzawa et al. 2008      Ideational_Fluency            Total  0.6488 0.2985
## Matsuzawa et al. 2008        Processing_Speed            Total  0.2947 0.2985
## Matsuzawa et al. 2008                   Total    Verbal_Memory -0.6176 0.2985
## Lesh et al. 2021                  Functioning            Total  0.4890 0.2582
## Ravanfar et al. 2022              Functioning            Total  0.7814 0.4714
## Matsuzawa et al. 2008      Ideational_Fluency Processing_Speed  0.3541 0.2462
## Matsuzawa et al. 2008      Ideational_Fluency    Verbal_Memory  0.0312 0.2462
## Coughlin et al. 2021       Ideational_Fluency Processing_Speed  0.4428 0.3922
## Coughlin et al. 2021       Ideational_Fluency    Verbal_Memory  0.5883 0.3922
## Matsuzawa et al. 2008        Processing_Speed    Verbal_Memory -0.3229 0.2462
## Coughlin et al. 2021         Processing_Speed    Verbal_Memory  0.1455 0.3922
##                            seTE.adj narms multiarm
## Matsuzawa et al. 2008        0.6628     6        *
## Matsuzawa et al. 2008        0.8074     6        *
## Matsuzawa et al. 2008        0.6628     6        *
## Matsuzawa et al. 2008        0.8074     6        *
## Matsuzawa et al. 2008        0.6628     6        *
## Reyes-Madrigal et al. 2019   0.8283     4        *
## Reyes-Madrigal et al. 2019   0.8283     4        *
## Reyes-Madrigal et al. 2019   0.8283     4        *
## Iwata et al. 2021            0.4209     4        *
## Iwata et al. 2021            0.4209     4        *
## Iwata et al. 2021            0.4209     4        *
## Coughlin et al. 2021         0.7266     5        *
## Coughlin et al. 2021         0.7266     5        *
## Coughlin et al. 2021         0.7266     5        *
## Coughlin et al. 2021         0.7266     5        *
## Lesh et al. 2021             0.4980     4        *
## Lesh et al. 2021             0.4980     4        *
## Lesh et al. 2021             0.4980     4        *
## Matsuzawa et al. 2008        0.6628     6        *
## Matsuzawa et al. 2008        0.6628     6        *
## Matsuzawa et al. 2008        0.8074     6        *
## Matsuzawa et al. 2008        0.6628     6        *
## Reyes-Madrigal et al. 2019   0.8283     4        *
## Reyes-Madrigal et al. 2019   0.8283     4        *
## Iwata et al. 2021            0.4209     4        *
## Iwata et al. 2021            0.4209     4        *
## Coughlin et al. 2021         0.7266     5        *
## Coughlin et al. 2021         0.7266     5        *
## Coughlin et al. 2021         0.7266     5        *
## Lesh et al. 2021             0.4980     4        *
## Lesh et al. 2021             0.4980     4        *
## Ravanfar et al. 2022         0.6476     3        *
## Ravanfar et al. 2022         0.6476     3        *
## Reyes-Madrigal et al. 2019   0.8283     4        *
## Iwata et al. 2021            0.4209     4        *
## Matsuzawa et al. 2008        0.6628     6        *
## Matsuzawa et al. 2008        0.6628     6        *
## Matsuzawa et al. 2008        0.6628     6        *
## Lesh et al. 2021             0.4980     4        *
## Ravanfar et al. 2022         0.6476     3        *
## Matsuzawa et al. 2008        0.5442     6        *
## Matsuzawa et al. 2008        0.5442     6        *
## Coughlin et al. 2021         0.7266     5        *
## Coughlin et al. 2021         0.7266     5        *
## Matsuzawa et al. 2008        0.5442     6        *
## Coughlin et al. 2021         0.7266     5        *
## 
## Number of treatment arms (by study):
##                            narms
## Matsuzawa et al. 2008          6
## Reyes-Madrigal et al. 2019     4
## Iwata et al. 2021              4
## Coughlin et al. 2021           5
## Lesh et al. 2021               4
## Ravanfar et al. 2022           3
## 
## Results (random effects model):
## 
##                                        treat1           treat2     SMD
## Matsuzawa et al. 2008      Ideational_Fluency         Positive  0.6123
## Matsuzawa et al. 2008                Negative         Positive -0.0466
## Matsuzawa et al. 2008                Positive Processing_Speed -0.2264
## Matsuzawa et al. 2008                Positive            Total  0.1737
## Matsuzawa et al. 2008                Positive    Verbal_Memory -0.3814
## Reyes-Madrigal et al. 2019            General         Positive -0.3517
## Reyes-Madrigal et al. 2019           Negative         Positive -0.0466
## Reyes-Madrigal et al. 2019           Positive            Total  0.1737
## Iwata et al. 2021                     General         Positive -0.3517
## Iwata et al. 2021                    Negative         Positive -0.0466
## Iwata et al. 2021                    Positive            Total  0.1737
## Coughlin et al. 2021       Ideational_Fluency         Positive  0.6123
## Coughlin et al. 2021                 Negative         Positive -0.0466
## Coughlin et al. 2021                 Positive Processing_Speed -0.2264
## Coughlin et al. 2021                 Positive    Verbal_Memory -0.3814
## Lesh et al. 2021                  Functioning         Positive  0.4208
## Lesh et al. 2021                     Negative         Positive -0.0466
## Lesh et al. 2021                     Positive            Total  0.1737
## Matsuzawa et al. 2008      Ideational_Fluency         Negative  0.6589
## Matsuzawa et al. 2008                Negative Processing_Speed -0.2730
## Matsuzawa et al. 2008                Negative            Total  0.1270
## Matsuzawa et al. 2008                Negative    Verbal_Memory -0.4281
## Reyes-Madrigal et al. 2019            General         Negative -0.3051
## Reyes-Madrigal et al. 2019           Negative            Total  0.1270
## Iwata et al. 2021                     General         Negative -0.3051
## Iwata et al. 2021                    Negative            Total  0.1270
## Coughlin et al. 2021       Ideational_Fluency         Negative  0.6589
## Coughlin et al. 2021                 Negative Processing_Speed -0.2730
## Coughlin et al. 2021                 Negative    Verbal_Memory -0.4281
## Lesh et al. 2021                  Functioning         Negative  0.4675
## Lesh et al. 2021                     Negative            Total  0.1270
## Ravanfar et al. 2022              Functioning         Negative  0.4675
## Ravanfar et al. 2022                 Negative            Total  0.1270
## Reyes-Madrigal et al. 2019            General            Total -0.1781
## Iwata et al. 2021                     General            Total -0.1781
## Matsuzawa et al. 2008      Ideational_Fluency            Total  0.7859
## Matsuzawa et al. 2008        Processing_Speed            Total  0.4000
## Matsuzawa et al. 2008                   Total    Verbal_Memory -0.5551
## Lesh et al. 2021                  Functioning            Total  0.5945
## Ravanfar et al. 2022              Functioning            Total  0.5945
## Matsuzawa et al. 2008      Ideational_Fluency Processing_Speed  0.3859
## Matsuzawa et al. 2008      Ideational_Fluency    Verbal_Memory  0.2308
## Coughlin et al. 2021       Ideational_Fluency Processing_Speed  0.3859
## Coughlin et al. 2021       Ideational_Fluency    Verbal_Memory  0.2308
## Matsuzawa et al. 2008        Processing_Speed    Verbal_Memory -0.1550
## Coughlin et al. 2021         Processing_Speed    Verbal_Memory -0.1550
##                                        95%-CI
## Matsuzawa et al. 2008      [ 0.1111;  1.1134]
## Matsuzawa et al. 2008      [-0.3840;  0.2907]
## Matsuzawa et al. 2008      [-0.7275;  0.2748]
## Matsuzawa et al. 2008      [-0.1799;  0.5272]
## Matsuzawa et al. 2008      [-0.8826;  0.1197]
## Reyes-Madrigal et al. 2019 [-0.8213;  0.1178]
## Reyes-Madrigal et al. 2019 [-0.3840;  0.2907]
## Reyes-Madrigal et al. 2019 [-0.1799;  0.5272]
## Iwata et al. 2021          [-0.8213;  0.1178]
## Iwata et al. 2021          [-0.3840;  0.2907]
## Iwata et al. 2021          [-0.1799;  0.5272]
## Coughlin et al. 2021       [ 0.1111;  1.1134]
## Coughlin et al. 2021       [-0.3840;  0.2907]
## Coughlin et al. 2021       [-0.7275;  0.2748]
## Coughlin et al. 2021       [-0.8826;  0.1197]
## Lesh et al. 2021           [-0.1084;  0.9501]
## Lesh et al. 2021           [-0.3840;  0.2907]
## Lesh et al. 2021           [-0.1799;  0.5272]
## Matsuzawa et al. 2008      [ 0.1597;  1.1581]
## Matsuzawa et al. 2008      [-0.7722;  0.2262]
## Matsuzawa et al. 2008      [-0.2136;  0.4677]
## Matsuzawa et al. 2008      [-0.9273;  0.0712]
## Reyes-Madrigal et al. 2019 [-0.7714;  0.1613]
## Reyes-Madrigal et al. 2019 [-0.2136;  0.4677]
## Iwata et al. 2021          [-0.7714;  0.1613]
## Iwata et al. 2021          [-0.2136;  0.4677]
## Coughlin et al. 2021       [ 0.1597;  1.1581]
## Coughlin et al. 2021       [-0.7722;  0.2262]
## Coughlin et al. 2021       [-0.9273;  0.0712]
## Lesh et al. 2021           [-0.0430;  0.9780]
## Lesh et al. 2021           [-0.2136;  0.4677]
## Ravanfar et al. 2022       [-0.0430;  0.9780]
## Ravanfar et al. 2022       [-0.2136;  0.4677]
## Reyes-Madrigal et al. 2019 [-0.6484;  0.2923]
## Iwata et al. 2021          [-0.6484;  0.2923]
## Matsuzawa et al. 2008      [ 0.2621;  1.3097]
## Matsuzawa et al. 2008      [-0.1238;  0.9238]
## Matsuzawa et al. 2008      [-1.0789; -0.0313]
## Lesh et al. 2021           [ 0.0814;  1.1076]
## Ravanfar et al. 2022       [ 0.0814;  1.1076]
## Matsuzawa et al. 2008      [-0.1533;  0.9251]
## Matsuzawa et al. 2008      [-0.3083;  0.7700]
## Coughlin et al. 2021       [-0.1533;  0.9251]
## Coughlin et al. 2021       [-0.3083;  0.7700]
## Matsuzawa et al. 2008      [-0.6942;  0.3841]
## Coughlin et al. 2021       [-0.6942;  0.3841]
## 
## Number of studies: k = 6
## Number of pairwise comparisons: m = 46
## Number of treatments: n = 8
## Number of designs: d = 5
## 
## Random effects model
## 
## Treatment estimate (sm = 'SMD', comparison: other treatments vs 'Functioning'):
##                        SMD             95%-CI     z p-value
## Functioning              .                  .     .       .
## General            -0.7726 [-1.4120; -0.1332] -2.37  0.0179
## Ideational_Fluency  0.1914 [-0.4783;  0.8611]  0.56  0.5753
## Negative           -0.4675 [-0.9780;  0.0430] -1.79  0.0727
## Positive           -0.4208 [-0.9501;  0.1084] -1.56  0.1191
## Processing_Speed   -0.1945 [-0.8642;  0.4752] -0.57  0.5692
## Total              -0.5945 [-1.1076; -0.0814] -2.27  0.0232
## Verbal_Memory      -0.0394 [-0.7091;  0.6303] -0.12  0.9081
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.0573; tau = 0.2394; I^2 = 35.8% [0.0%; 66.1%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f. p-value
## Total           20.26   13  0.0890
## Within designs  13.64    3  0.0034
## Between designs  6.62   10  0.7607
## 
## Details of network meta-analysis methods:
## - Frequentist graph-theoretical approach
## - DerSimonian-Laird estimator for tau^2
## - Calculation of I^2 based on Q

Explanation:
For each modality, outcomes are compared within a network framework to evaluate relative differences across clinical measures.


5. Individual Subgroup Meta‐Analyses

The following analyses focus on specific subgroups to illustrate the association between GSH levels and particular clinical outcomes.

5.1 Imaging – Total

res_imaging_total <- rma(yi = atanh(Correlation),
                         vi = 1/(SampleSize - 3),
                         data = imaging_total,
                         method = "REML")
cat("\n--- Imaging Total Meta-Analysis ---\n")
## 
## --- Imaging Total Meta-Analysis ---
print(summary(res_imaging_total))
## 
## Random-Effects Model (k = 5; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  -0.5464    1.0928    5.0928    3.8654   17.0928   
## 
## tau^2 (estimated amount of total heterogeneity): 0.0013 (SE = 0.0292)
## tau (square root of estimated tau^2 value):      0.0359
## I^2 (total heterogeneity / total variability):   2.64%
## H^2 (total variability / sampling variability):  1.03
## 
## Test for Heterogeneity:
## Q(df = 4) = 5.0451, p-val = 0.2827
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub    
##  -0.1678  0.0911  -1.8419  0.0655  -0.3464  0.0108  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Forest plot
forest(res_imaging_total,
       slab = imaging_total$Authors,
       xlab = "Fisher's Z",
       mlab = "Imaging Total")

# Funnel plot to assess publication bias
funnel(res_imaging_total, main = "Funnel Plot: Imaging Total")

Explanation:
This subgroup analysis examines overall GSH measures from brain imaging studies and provides visual summaries (forest and funnel plots).

5.2 GSHt – Positive

res_gsht_positive <- rma(yi = atanh(Correlation),
                         vi = 1/(SampleSize - 3),
                         data = gsht_positive,
                         method = "REML")
cat("\n--- GSHt Positive Meta-Analysis ---\n")
## 
## --- GSHt Positive Meta-Analysis ---
print(summary(res_gsht_positive))
## 
## Random-Effects Model (k = 14; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  -0.3565    0.7130    4.7130    5.8429    5.9130   
## 
## tau^2 (estimated amount of total heterogeneity): 0.0261 (SE = 0.0210)
## tau (square root of estimated tau^2 value):      0.1616
## I^2 (total heterogeneity / total variability):   52.76%
## H^2 (total variability / sampling variability):  2.12
## 
## Test for Heterogeneity:
## Q(df = 13) = 26.1734, p-val = 0.0161
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub    
##  -0.0070  0.0628  -0.1113  0.9114  -0.1300  0.1160    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Forest plot
forest(res_gsht_positive,
       slab = gsht_positive$Authors,
       xlab = "Fisher's Z",
       mlab = "GSHt Positive")

# Funnel plot
funnel(res_gsht_positive, main = "Funnel Plot: GSHt Positive")

Explanation:
This analysis targets studies reporting blood total glutathione (GSHt) in relation to positive symptoms.

5.3 GSHr – Negative

res_gshr_negative <- rma(yi = atanh(Correlation),
                         vi = 1/(SampleSize - 3),
                         data = gshr_negative,
                         method = "REML")
cat("\n--- GSHr Negative Meta-Analysis ---\n")
## 
## --- GSHr Negative Meta-Analysis ---
print(summary(res_gshr_negative))
## 
## Random-Effects Model (k = 5; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##   0.6333   -1.2666    2.7334    1.5060   14.7334   
## 
## tau^2 (estimated amount of total heterogeneity): 0.0286 (SE = 0.0315)
## tau (square root of estimated tau^2 value):      0.1692
## I^2 (total heterogeneity / total variability):   66.55%
## H^2 (total variability / sampling variability):  2.99
## 
## Test for Heterogeneity:
## Q(df = 4) = 11.9360, p-val = 0.0178
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub    
##  -0.1007  0.0949  -1.0612  0.2886  -0.2867  0.0853    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Forest plot
forest(res_gshr_negative,
       slab = gshr_negative$Authors,
       xlab = "Fisher's Z",
       mlab = "GSHr Negative")

# Funnel plot
funnel(res_gshr_negative, main = "Funnel Plot: GSHr Negative")

Explanation:
This subgroup analysis assesses the relationship between reduced glutathione (GSHr) in blood and negative symptom severity.


Discussion

The results of this meta‐analysis indicate that while MRS‐based brain GSH measures do not show a robust association with clinical symptom severity, blood-based assessments—particularly of total glutathione (GSHt)—are significantly correlated with both symptom burden and cognitive performance. These observations lend support to the hypothesis that peripheral GSHt may serve as a biomarker for SSD severity. Methodological heterogeneity (e.g., differences in MRS protocols, cell types analyzed in blood assays) likely contributes to the observed discrepancies. Standardizing measurement techniques across studies is essential for clarifying the role of oxidative stress in SSD pathophysiology.

Extended Discussion

Recent research indicates that oxidative stress is linked not only to the presence of psychosis but also to its severity and functional outcomes. Markers of oxidative damage have been found to correlate with symptom severity in first-episode psychosis patients, including associations with more severe positive symptoms, greater negative symptom burden, and cognitive impairments. In particular, glutathione status (including reduced GSH, oxidized GSSG, and total GSH) may relate to these clinical features. For example, higher oxidized glutathione (GSSG) levels have been associated with worse cognitive performance in early-phase SZ, supporting the view that oxidative stress can contribute to the neurodegenerative aspects of the illness. Conversely, deficits in GSH-dependent defenses might manifest as or exacerbate negative symptoms; indeed, low GSH has been hypothesized to underlie certain negative symptom dimensions via NMDAR hypofunction and neuronal damage. Given that cognitive impairment and negative symptoms are major determinants of long-term disability in schizophrenia, uncovering links between GSH and these symptom domains is of high clinical interest.

Several studies have directly examined glutathione levels in patients and their relationship with symptom severity or cognitive function. However, findings have been mixed. Some report that lower GSH (in the brain or periphery) correlates with more severe overall symptoms or specific symptom domains, whereas others find no significant association. This inconsistency may stem from differences in illness stage, treatment status, or measurement techniques. To clarify the role of GSH in schizophrenia symptomatology, we performed a systematic review and meta-analysis of studies quantifying glutathione in patients with schizophrenia spectrum disorders and assessing its relationship to symptom severity or cognitive performance. In this report, we discuss our findings in the context of the broader literature, with explicit attention to symptom severity, cognitive function, and potential moderators such as brain region, illness phase, and antipsychotic treatment.

Several factors may explain discrepancies in the literature: - Illness Stage: First-episode or unmedicated patients tend to show stronger correlations between low GSH and increased symptom severity, whereas chronic patients (often medicated) may display more normalized GSH levels. - Regional Brain Differences: MRS studies indicate that regional variations (e.g., in the anterior cingulate cortex vs. medial temporal lobe) affect GSH measures, influencing their correlation with clinical outcomes. - Methodological Variations: Differences in measurement techniques, such as scanner field strength and spectral editing methods, contribute to variability in reported GSH values. - Patient Subtypes: Emerging evidence suggests the existence of distinct schizophrenia biotypes with respect to redox status, wherein only a subset of patients exhibits marked GSH deficits.

These insights underline the importance of standardized measurement and stratified analyses in future research.


Conclusion

This comprehensive meta‐analysis synthesizes evidence from both brain imaging and blood studies to examine the relationship between glutathione levels and clinical outcomes in schizophrenia spectrum disorders. Although brain GSH levels did not correlate significantly with symptom severity, the significant associations observed with blood GSHt levels underscore its potential as a biomarker. Future research should prioritize methodological standardization and explore the interplay between GSH, glutamatergic neurotransmission, and clinical outcomes.