This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
# Construct a set of vectors contaiing data on three medical patients,
subject_name <- c("John Doe", "Jane Doe", "Steve Graves")
temperature <- c(98.1, 98.6, 101.4)
flu_status <- c(FALSE, FALSE, TRUE)
# Values stored in R vectors retain their order
#By index
temperature[2]
## [1] 98.6
#To obtain the body temperature of the second and third patients, type
# By range
temperature[2:3]
## [1] 98.6 101.4
# By exclusion
temperature[-2]
## [1] 98.1 101.4
# Factors are used to represent categorical or ordinal variables
##Coding a factor attribte in R
gender <- factor(c("MALE","FEMALE", "MALE"))
gender
## [1] MALE FEMALE MALE
## Levels: FEMALE MALE
#Adding levels ot categorical attributes
blood <- factor(c("O","AB", "A"), levels = c("A", "B", "AB", "O"))
blood
## [1] O AB A
## Levels: A B AB O
#Ordinal Factor Attributes, also categorical but includes order
symptoms <- factor(c("SEVERE", "MILD", "MODERATE"), levels = c("MILD", "MODERATE", "SEVERE"), ordered = TRUE)
symptoms
## [1] SEVERE MILD MODERATE
## Levels: MILD < MODERATE < SEVERE
#Adding levels to categorical attributes
blood_sign <- factor(c("+", "-"), levels = (c("+", "-")))
blood_sign
## [1] + -
## Levels: + -
symptoms >= "MODERATE"
## [1] TRUE FALSE TRUE
# Creating a data frame
pt_data <- data.frame(subject_name, temperature, flu_status, gender, blood, symptoms, stringsAsFactors = FALSE)
pt_data
## subject_name temperature flu_status gender blood symptoms
## 1 John Doe 98.1 FALSE MALE O SEVERE
## 2 Jane Doe 98.6 FALSE FEMALE AB MILD
## 3 Steve Graves 101.4 TRUE MALE A MODERATE
pt_data[1,2]
## [1] 98.1
pt_data[1,]
## subject_name temperature flu_status gender blood symptoms
## 1 John Doe 98.1 FALSE MALE O SEVERE
#To extract everything
pt_data[,]
## subject_name temperature flu_status gender blood symptoms
## 1 John Doe 98.1 FALSE MALE O SEVERE
## 2 Jane Doe 98.6 FALSE FEMALE AB MILD
## 3 Steve Graves 101.4 TRUE MALE A MODERATE
pt_data[c(1,3), c(2,4)]
## temperature gender
## 1 98.1 MALE
## 3 101.4 MALE
#columns are better accessed by name rather than position
pt_data[c(1,3), c("temperature", "gender")]
## temperature gender
## 1 98.1 MALE
## 3 101.4 MALE
# Creating new columns in a dataframe
# Convert f
pt_data$temp_c <- (pt_data$temperature - 32)* (5/9)
pt_data$temp_c
## [1] 36.72222 37.00000 38.55556
#Checking if our data is added
pt_data[c("temperature", "temp_c")]
## temperature temp_c
## 1 98.1 36.72222
## 2 98.6 37.00000
## 3 101.4 38.55556
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.