R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

# Construct a set of vectors contaiing data on three medical patients, 
subject_name <- c("John Doe", "Jane Doe", "Steve Graves")
temperature <- c(98.1, 98.6, 101.4)
flu_status <- c(FALSE, FALSE, TRUE)

# Values stored in R vectors retain their order 
#By index
temperature[2]
## [1] 98.6
#To obtain the body temperature of the second and third patients, type
# By range
temperature[2:3]
## [1]  98.6 101.4
# By exclusion
temperature[-2]
## [1]  98.1 101.4
# Factors are used to represent categorical or ordinal variables

##Coding a factor attribte in R
gender <- factor(c("MALE","FEMALE", "MALE"))
gender
## [1] MALE   FEMALE MALE  
## Levels: FEMALE MALE
#Adding levels ot categorical attributes
blood <- factor(c("O","AB", "A"), levels = c("A", "B", "AB", "O"))
blood
## [1] O  AB A 
## Levels: A B AB O
#Ordinal Factor Attributes, also categorical but includes order
symptoms <- factor(c("SEVERE", "MILD", "MODERATE"), levels = c("MILD", "MODERATE", "SEVERE"), ordered = TRUE)
symptoms
## [1] SEVERE   MILD     MODERATE
## Levels: MILD < MODERATE < SEVERE
#Adding levels to categorical attributes
blood_sign <- factor(c("+", "-"), levels = (c("+", "-")))
blood_sign
## [1] + -
## Levels: + -
symptoms >= "MODERATE"
## [1]  TRUE FALSE  TRUE
# Creating  a data frame
pt_data <- data.frame(subject_name, temperature, flu_status, gender, blood, symptoms, stringsAsFactors = FALSE)
pt_data
##   subject_name temperature flu_status gender blood symptoms
## 1     John Doe        98.1      FALSE   MALE     O   SEVERE
## 2     Jane Doe        98.6      FALSE FEMALE    AB     MILD
## 3 Steve Graves       101.4       TRUE   MALE     A MODERATE
pt_data[1,2]
## [1] 98.1
pt_data[1,]
##   subject_name temperature flu_status gender blood symptoms
## 1     John Doe        98.1      FALSE   MALE     O   SEVERE
#To extract everything
pt_data[,]
##   subject_name temperature flu_status gender blood symptoms
## 1     John Doe        98.1      FALSE   MALE     O   SEVERE
## 2     Jane Doe        98.6      FALSE FEMALE    AB     MILD
## 3 Steve Graves       101.4       TRUE   MALE     A MODERATE
pt_data[c(1,3), c(2,4)]
##   temperature gender
## 1        98.1   MALE
## 3       101.4   MALE
#columns are better accessed by name rather than position
pt_data[c(1,3), c("temperature", "gender")]
##   temperature gender
## 1        98.1   MALE
## 3       101.4   MALE
# Creating new columns in a dataframe
# Convert f
pt_data$temp_c <- (pt_data$temperature - 32)* (5/9)
pt_data$temp_c
## [1] 36.72222 37.00000 38.55556
#Checking if our data is added
pt_data[c("temperature", "temp_c")]
##   temperature   temp_c
## 1        98.1 36.72222
## 2        98.6 37.00000
## 3       101.4 38.55556

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.