library(readxl)
mydata <- read_xlsx("./dataset copy.xlsx")
## New names:
## • `Q22a_1` -> `Q22a_1...26`
## • `Q22b_1` -> `Q22b_1...27`
## • `Q22c_1` -> `Q22c_1...28`
## • `Q22d_1` -> `Q22d_1...29`
## • `Q22e_1` -> `Q22e_1...30`
## • `Q22a_1` -> `Q22a_1...32`
## • `Q22b_1` -> `Q22b_1...33`
## • `Q22c_1` -> `Q22c_1...34`
## • `Q22d_1` -> `Q22d_1...72`
## • `Q22e_1` -> `Q22e_1...73`
mydata <- mydata[-1, ]

head(mydata)
## # A tibble: 6 × 73
##   Q8    Q66   Q10   Q12   Q11   Q48   Q48_5_text Q14a  Q14b  Q14c  Q14d  Q14e 
##   <chr> <chr> <chr> <chr> <chr> <chr> <chr>      <chr> <chr> <chr> <chr> <chr>
## 1 1     3     3     6     2     -2    -2         0     1     0     0     0    
## 2 1     2     5     6     1     1     -2         0     1     0     0     0    
## 3 1     6     5     6     1     3     -2         0     1     0     1     0    
## 4 1     2     5     6     2     -2    -2         1     0     1     1     0    
## 5 1     2     2     6     2     -2    -2         0     1     0     0     0    
## 6 1     6     7     7     2     -2    -2         0     1     0     0     0    
## # ℹ 61 more variables: Q14e_text <chr>, Q15 <chr>, Q16 <chr>, Q17 <chr>,
## #   Q18 <chr>, Q25a <chr>, Q25b <chr>, Q25c <chr>, Q25d <chr>, Q25e <chr>,
## #   Q25f <chr>, Q25g <chr>, Q25h <chr>, Q22a_1...26 <dbl>, Q22b_1...27 <dbl>,
## #   Q22c_1...28 <dbl>, Q22d_1...29 <dbl>, Q22e_1...30 <dbl>, Q24 <chr>,
## #   Q22a_1...32 <dbl>, Q22b_1...33 <dbl>, Q22c_1...34 <dbl>, Q13 <chr>,
## #   Q20 <chr>, Q46 <chr>, Q1a_1 <dbl>, Q1b_1 <dbl>, Q1c_1 <dbl>, Q1d_1 <dbl>,
## #   Q1e_1 <dbl>, Q1f_1 <dbl>, Q2a_1 <dbl>, Q2b_1 <dbl>, Q2c_1 <dbl>, …
mydata$Q39 <- factor(mydata$Q39,
                        levels = c(1,2),
                        labels = c("Male", "Female"))

mydata$Q37 <- factor(mydata$Q37, 
                        levels = c(1, 2, 3, 4, 5, 6, 7),
                        labels = c("Less than 1,000", "1,001 - 1,300", "1,301 - 1,700", "1,701 - 2,500", "2,501 - 3,300", "More than 3,000", "Pension"))

mydata$Q41 <- factor(mydata$Q41,
                           levels = c(1, 2, 3, 4, 5, 6, 7),
                           labels = c("Unfinished Elementary", "Finished Elementary", "Vocational School", "General High School", "Undergraduate Degree", "Master's Degree", "PhD"))

mydata$Q42 <- factor(mydata$Q42,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Employed", "Self-Employed", "Retired", "Unemployed", "Other"))  
#Service #Creative
mydata$Q43 <- factor(mydata$Q43,
                            levels = c(1, 2, 3, 4, 5),
                            labels = c("Physical Work", "Physical Work", "Office", "Public Sector", "Physical Work"))

mydata$Q44 <- factor(mydata$Q44,
                             levels = c(1, 2, 3),
                             labels = c("Urban", "Urban", "Rural"))
                             
mydata$Q45 <- factor(mydata$Q45,
                      levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
                      labels = c("NLB", "OTP", "Unicredit", "Raiffaisen", "Gorenjska banka", "Intesa Sanpaolo", "Delavska hranilnica", "Revolut", "N26", "Other"))     

mydata$Q11 <- factor(mydata$Q11,
                                    levels = c(1, 2),
                                    labels = c("No", "Yes"))   
mydata$Q13 <- factor(mydata$Q13,
                      levels = c(1, 2, 3, 4, 5, 6, 7),
                      labels = c("Never", "Less than once a month", "Once a month", "2-3 times a month", "Once a week", "2-3 times a week","Every day"))  

mydata$Q20 <- factor(mydata$Q20,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Less than 50", "50-100", "101-300", "301-500", "More than 500"))
mydata$Q40 <- as.numeric(as.character(mydata$Q40))



mydata$Q40 <- 2025 - mydata$Q40
head(mydata)
## # A tibble: 6 × 73
##   Q8    Q66   Q10   Q12   Q11   Q48   Q48_5_text Q14a  Q14b  Q14c  Q14d  Q14e 
##   <chr> <chr> <chr> <chr> <fct> <chr> <chr>      <chr> <chr> <chr> <chr> <chr>
## 1 1     3     3     6     Yes   -2    -2         0     1     0     0     0    
## 2 1     2     5     6     No    1     -2         0     1     0     0     0    
## 3 1     6     5     6     No    3     -2         0     1     0     1     0    
## 4 1     2     5     6     Yes   -2    -2         1     0     1     1     0    
## 5 1     2     2     6     Yes   -2    -2         0     1     0     0     0    
## 6 1     6     7     7     Yes   -2    -2         0     1     0     0     0    
## # ℹ 61 more variables: Q14e_text <chr>, Q15 <chr>, Q16 <chr>, Q17 <chr>,
## #   Q18 <chr>, Q25a <chr>, Q25b <chr>, Q25c <chr>, Q25d <chr>, Q25e <chr>,
## #   Q25f <chr>, Q25g <chr>, Q25h <chr>, Q22a_1...26 <dbl>, Q22b_1...27 <dbl>,
## #   Q22c_1...28 <dbl>, Q22d_1...29 <dbl>, Q22e_1...30 <dbl>, Q24 <chr>,
## #   Q22a_1...32 <dbl>, Q22b_1...33 <dbl>, Q22c_1...34 <dbl>, Q13 <fct>,
## #   Q20 <fct>, Q46 <chr>, Q1a_1 <dbl>, Q1b_1 <dbl>, Q1c_1 <dbl>, Q1d_1 <dbl>,
## #   Q1e_1 <dbl>, Q1f_1 <dbl>, Q2a_1 <dbl>, Q2b_1 <dbl>, Q2c_1 <dbl>, …
mydata$Q25a <- factor(mydata$Q25a,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Cash only", "Mostly cash","Half-half", "Mostly digital","Digital only"))
mydata$Q25b <- factor(mydata$Q25b,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Cash only", "Mostly cash","Half-half", "Mostly digital","Digital only"))
mydata$Q25c <- factor(mydata$Q25c,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Cash only", "Mostly cash","Half-half", "Mostly digital","Digital only"))
mydata$Q25d <- factor(mydata$Q25d,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Cash only", "Mostly cash","Half-half", "Mostly digital","Digital only"))
mydata$Q25e <- factor(mydata$Q25e,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Cash only", "Mostly cash","Half-half", "Mostly digital","Digital only"))
mydata$Q25f <- factor(mydata$Q25f,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Cash only", "Mostly cash","Half-half", "Mostly digital","Digital only"))
mydata$Q25g <- factor(mydata$Q25g,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Cash only", "Mostly cash","Half-half", "Mostly digital","Digital only"))
mydata$Q25h <- factor(mydata$Q25h,
                      levels = c(1, 2, 3, 4, 5),
                      labels = c("Cash only", "Mostly cash","Half-half", "Mostly digital","Digital only"))
summary(mydata[c(35,36,62,63,65,66,68,69,70)])
##                      Q13                Q20         Q39          Q40       
##  Never                 : 3   Less than 50 :88   Male  :63   Min.   :20.00  
##  Less than once a month:40   50-100       :43   Female:89   1st Qu.:26.00  
##  Once a month          :45   101-300      :20               Median :38.00  
##  2-3 times a month     :39   301-500      : 0               Mean   :39.02  
##  Once a week           :11   More than 500: 1               3rd Qu.:49.00  
##  2-3 times a week      :11                                  Max.   :65.00  
##  Every day             : 3                                                 
##                     Q41                Q42                 Q43        Q44     
##  Unfinished Elementary: 0   Employed     :118   Physical Work:41   Urban:120  
##  Finished Elementary  : 2   Self-Employed: 25   Office       :48   Rural: 32  
##  Vocational School    : 9   Retired      :  0   Public Sector:29              
##  General High School  :43   Unemployed   :  9   NA's         :34              
##  Undergraduate Degree :55   Other        :  0                                 
##  Master's Degree      :35                                                     
##  PhD                  : 8                                                     
##                   Q45    
##  NLB                :56  
##  OTP                :40  
##  Intesa Sanpaolo    :19  
##  Unicredit          :11  
##  Delavska hranilnica:10  
##  Revolut            : 8  
##  (Other)            : 8

Q46:Usage of digital payments relative to cash (0-100 slider)

Q1:Kako pomembni so vam naslednji dejavniki, ko se odločate, katero plačilno metodo uporabiti?

Q1a_1:Security

Ho:Importance of security when making payments does not influence the usage of digital payments.

H1:Importance of security when making payments positively influences the usage of digital payments.

We do not reject the null hypotheses. p-value > 0.05

mydata$Q46 <- as.numeric(as.character(mydata$Q46))
mydata$Q1a_1 <- as.numeric(as.character(mydata$Q1a_1))
library(car)
## Loading required package: carData
scatterplotMatrix(mydata[ ,c(37,38)], smooth=FALSE)

library(Hmisc)
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
rcorr(as.matrix(mydata[ ,c(37,38)]),
      type="pearson")
##        Q46 Q1a_1
## Q46   1.00  0.01
## Q1a_1 0.01  1.00
## 
## n= 152 
## 
## 
## P
##       Q46    Q1a_1 
## Q46          0.9054
## Q1a_1 0.9054
#security

Q1b_1:Speed of transaction

Ho:Importance of speed of transaction when making payments does not influence the usage of digital payments.

H1:Importance of speed of transaction when making payments positively influences the usage of digital payments.

We reject the null hypotheses. p-value < 0.011

mydata$Q46 <- as.numeric(as.character(mydata$Q46))
mydata$Q1b_1 <- as.numeric(as.character(mydata$Q1b_1))
library(car)
scatterplotMatrix(mydata[ ,c(37,39)], smooth=FALSE)

library(Hmisc)
rcorr(as.matrix(mydata[ ,c(37,39)]),
      type="pearson")
##        Q46 Q1b_1
## Q46   1.00  0.21
## Q1b_1 0.21  1.00
## 
## n= 152 
## 
## 
## P
##       Q46    Q1b_1 
## Q46          0.0106
## Q1b_1 0.0106
#speed of transactions

Q1c_1:Ease of use

Ho:Importance of Ease of use when making payments does not influence the usage of digital payments.

H1:Importance of Ease of use when making payments positively influences the usage of digital payments.

We reject the null hypotheses. p-value < 0.001

mydata$Q46 <- as.numeric(as.character(mydata$Q46))
mydata$Q1c_1 <- as.numeric(as.character(mydata$Q1c_1))
library(car)
scatterplotMatrix(mydata[ ,c(37,40)], smooth=FALSE)

library(Hmisc)
rcorr(as.matrix(mydata[ ,c(37,40)]),
      type="pearson")
##        Q46 Q1c_1
## Q46   1.00  0.29
## Q1c_1 0.29  1.00
## 
## n= 152 
## 
## 
## P
##       Q46   Q1c_1
## Q46         3e-04
## Q1c_1 3e-04
#ease of use

Q1d_1:Convenience

Ho:Importance of Ease of use when making payments does not influence the usage of digital payments.

H1:Importance of Ease of use when making payments positively influences the usage of digital payments.

We reject the null hypotheses. p-value < 0.001

mydata$Q46 <- as.numeric(as.character(mydata$Q46))
mydata$Q1d_1 <- as.numeric(as.character(mydata$Q1d_1))
library(car)
scatterplotMatrix(mydata[ ,c(37,41)], smooth=FALSE)

library(Hmisc)
rcorr(as.matrix(mydata[ ,c(37,41)]),
      type="pearson")
##        Q46 Q1d_1
## Q46   1.00  0.27
## Q1d_1 0.27  1.00
## 
## n= 152 
## 
## 
## P
##       Q46   Q1d_1
## Q46         6e-04
## Q1d_1 6e-04
#convenience

Q1e_1:Privacy

Ho:Importance of Privacy when making payments does not influence the usage of digital payments.

H1:Importance of Privacy when making payments negatively influences the usage of digital payments.

We reject the null hypotheses. p-value < 0.01

mydata$Q46 <- as.numeric(as.character(mydata$Q46))
mydata$Q1e_1 <- as.numeric(as.character(mydata$Q1e_1))
library(car)
scatterplotMatrix(mydata[ ,c(37,42)], smooth=FALSE)

library(Hmisc)
rcorr(as.matrix(mydata[ ,c(37,42)]),
      type="pearson")
##         Q46 Q1e_1
## Q46    1.00 -0.26
## Q1e_1 -0.26  1.00
## 
## n= 152 
## 
## 
## P
##       Q46    Q1e_1 
## Q46          0.0013
## Q1e_1 0.0013
#privacy

Q1f_1:Spending control

Ho:Importance of Spending control when making payments does not influence the usage of digital payments.

H1:Importance of Spending control when making payments positively influences the usage of digital payments.

We do not reject the null hypotheses. p-value > 0.05

mydata$Q46 <- as.numeric(as.character(mydata$Q46))
mydata$Q1f_1 <- as.numeric(as.character(mydata$Q1f_1))
library(car)
scatterplotMatrix(mydata[ ,c(37,43)], smooth=FALSE)

library(Hmisc)
rcorr(as.matrix(mydata[ ,c(37,43)]),
      type="pearson")
##         Q46 Q1f_1
## Q46    1.00 -0.02
## Q1f_1 -0.02  1.00
## 
## n= 152 
## 
## 
## P
##       Q46    Q1f_1 
## Q46          0.7674
## Q1f_1 0.7674
#spending control

Q44: Where do you reside? (0:Urban,1:Rural)

Ho:Rural and urban people use the same proportion of cash and digital payments.

H1:Rural people use more cash than urban people./Urban people use digital payments more.

We reject the null hypotheses. p-value > 0.01

wilcox.test(mydata$Q46~mydata$Q44,
              correct=FALSE,
            alternative = "greater",
              exact=FALSE)
## 
##  Wilcoxon rank sum test
## 
## data:  mydata$Q46 by mydata$Q44
## W = 2436.5, p-value = 0.009716
## alternative hypothesis: true location shift is greater than 0
library(effectsize)
effectsize(wilcox.test(mydata$Q46~mydata$Q44,
              correct=FALSE,
            alternative = "greater",
              exact=FALSE))
## r (rank biserial) |       95% CI
## --------------------------------
## 0.27              | [0.09, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].
interpret_rank_biserial(0.27, rules="funder2019")
## [1] "medium"
## (Rules: funder2019)

Q15:Pri plačilih za manjše vrednosti (do 10 €) se mi zdi gotovina hitrejši način plačila od digitalnih plačil.

Ho:Cash and digital payments are evenly popular for small-value transactions (up to €10) because of convenience.

H1:Cash is more popular for small-value transactions (up to €10) because of convenience.

We do not reject the null hypotheses.

#if faster, 10eur
mydata$Q15 <- as.numeric(as.character(mydata$Q15))
shapiro.test(mydata$Q15)
## 
##  Shapiro-Wilk normality test
## 
## data:  mydata$Q15
## W = 0.86315, p-value = 1.443e-10
wilcox.test(mydata$Q15,
              mu=4,
            alternative = "greater",
              correct=FALSE)
## 
##  Wilcoxon signed rank test
## 
## data:  mydata$Q15
## V = 3009, p-value = 1
## alternative hypothesis: true location is greater than 4

Q17:Rad/a uporabljam mobilne plačilne platforme (kot so Apple Pay, Revolut, PayPal, Flik), ker so priročne.

Ho:Convenience does not influence the usage of mobile payment platforms such as Apple Pay, Revolut, PayPal, Flik.

H1:Convenience significantly influences the usage of mobile payment platforms such as Apple Pay, Revolut, PayPal, Flik.

We reject the null hypotheses. p-value < 0.001

#flik, convenient
mydata$Q17 <- as.numeric(as.character(mydata$Q17))
shapiro.test(mydata$Q17)
## 
##  Shapiro-Wilk normality test
## 
## data:  mydata$Q17
## W = 0.78751, p-value = 1.407e-13
wilcox.test(mydata$Q17,
              mu=4,
            alternative = "greater",
              correct=FALSE)
## 
##  Wilcoxon signed rank test
## 
## data:  mydata$Q17
## V = 8734, p-value = 3.884e-11
## alternative hypothesis: true location is greater than 4
effectsize(wilcox.test(mydata$Q17,
              mu=4,
              alternative = "greater",
              correct=FALSE))
## r (rank biserial) |       95% CI
## --------------------------------
## 0.61              | [0.50, 1.00]
## 
## - Deviation from a difference of 4.
## - One-sided CIs: upper bound fixed at [1.00].
interpret_rank_biserial(0.61, rules="funder2019")
## [1] "very large"
## (Rules: funder2019)

Q18:Verjetno bom uporabljal/a mobilne plačilne platforme (kot so Apple Pay, Revolut, PayPal, Flik), če mi jih priporočijo prijatelji, družina ali vrstniki.

Ho:Recommendations by friends, family, or peers do not influence the usage of mobile payment platforms such as Apple Pay, Revolut, PayPal, Flik.

H1:Recommendations by friends, family, or peers significantly positively influence the usage of mobile payment platforms such as Apple Pay, Revolut, PayPal, Flik.

We reject the null hypotheses. p-value < 0.001

#flik, family
mydata$Q18 <- as.numeric(as.character(mydata$Q18))
shapiro.test(mydata$Q18)
## 
##  Shapiro-Wilk normality test
## 
## data:  mydata$Q18
## W = 0.87963, p-value = 9.066e-10
wilcox.test(mydata$Q18,
              mu=4,
            alternative = "greater",
              correct=FALSE)
## 
##  Wilcoxon signed rank test
## 
## data:  mydata$Q18
## V = 8163, p-value = 4.305e-09
## alternative hypothesis: true location is greater than 4
library(effectsize)
effectsize(wilcox.test(mydata$Q18,
              mu=4,
              alternative = "greater",
              correct=FALSE))
## r (rank biserial) |       95% CI
## --------------------------------
## 0.54              | [0.42, 1.00]
## 
## - Deviation from a difference of 4.
## - One-sided CIs: upper bound fixed at [1.00].
interpret_rank_biserial(0.54, rules="funder2019")
## [1] "very large"
## (Rules: funder2019)

Q10:Raje imam pri sebi gotovino, ker ni vedno mogoče plačati z drugimi plačilnimi sredstvi.

Ho:Limited infrastructure for digital payments does not influence the use of cash.

H1:Limited infrastructure for digital payments increases the use of cash.

We do not reject the null hypotheses. p-value > 0.05

#infrastructure, cash
mydata$Q10 <- as.numeric(as.character(mydata$Q10))
shapiro.test(mydata$Q10)
## 
##  Shapiro-Wilk normality test
## 
## data:  mydata$Q10
## W = 0.91107, p-value = 4.992e-08
wilcox.test(mydata$Q10,
              mu=4,
            alternative = "greater",
              correct=FALSE)
## 
##  Wilcoxon signed rank test
## 
## data:  mydata$Q10
## V = 6179.5, p-value = 0.05264
## alternative hypothesis: true location is greater than 4