Data Prep

Load Libraries

# if you haven't run this code before, you'll need to download the below packages first
# you should see a prompt near the top of the page (in a yellow bar within the RStudio window)
# you can also use the packages tab to the right

library(naniar) # for the gg_miss-upset() command

Import Data

# # for the HW, you'll import the CSV file of your chosen dataset
df <- read.csv(file="Data/arc_data_final.csv", header=T)

Viewing Data

# # these are commands useful for viewing a dataframe
# # you can also click the object in the environment tab to view it in a new window
 names(df)
 [1] "X"                    "gender"               "trans"               
 [4] "sexual_orientation"   "ethnicity"            "relationship_status" 
 [7] "age"                  "urban_rural"          "income"              
[10] "education"            "employment"           "treatment"           
[13] "health"               "mhealth"              "sleep_hours"         
[16] "exercise_cat"         "pet"                  "covid_pos"           
[19] "covid_neg"            "big5_open"            "big5_con"            
[22] "big5_agr"             "big5_neu"             "big5_ext"            
[25] "pswq"                 "iou"                  "mfq_26"              
[28] "mfq_state"            "rse"                  "school_covid_support"
[31] "school_att"           "pas_covid"            "pss"                 
[34] "phq"                  "gad"                  "edeq12"              
[37] "brs"                  "swemws"               "isolation"           
[40] "support"             
 head(df)
   X gender trans    sexual_orientation                     ethnicity
1  1 female    no Heterosexual/Straight White - British, Irish, other
2 20   male    no Heterosexual/Straight White - British, Irish, other
3 30 female    no Heterosexual/Straight White - British, Irish, other
4 31 female    no Heterosexual/Straight White - British, Irish, other
5 32   <NA>  <NA>                  <NA>                          <NA>
6 33 female    no Heterosexual/Straight White - British, Irish, other
                       relationship_status                 age urban_rural
1 In a relationship/married and cohabiting                <NA>        city
2                        Prefer not to say          1 under 18        city
3                        Prefer not to say          1 under 18        city
4 In a relationship/married and cohabiting 4 between 36 and 45        town
5                                     <NA>                <NA>        <NA>
6 In a relationship/married and cohabiting 4 between 36 and 45        city
    income                              education               employment
1   3 high            6 graduate degree or higher               3 employed
2     <NA>                      prefer not to say 1 high school equivalent
3     <NA> 2 equivalent to high school completion 1 high school equivalent
4 2 middle                 5 undergraduate degree               3 employed
5     <NA>                                   <NA>                     <NA>
6 2 middle            6 graduate degree or higher               3 employed
                   treatment                           health          mhealth
1 no psychological disorders something else or not applicable       none or NA
2               in treatment something else or not applicable anxiety disorder
3           not in treatment something else or not applicable       none or NA
4 no psychological disorders                   two conditions       none or NA
5                       <NA>                             <NA>       none or NA
6           not in treatment something else or not applicable       none or NA
  sleep_hours       exercise_cat                   pet covid_pos covid_neg
1 3 7-8 hours 1 less than 1 hour                   cat         0         0
2 2 5-6 hours        2 1-2 hours                   cat         0         0
3 3 7-8 hours        3 2-5 hours                   dog         0         0
4 2 5-6 hours        2 1-2 hours               no pets         0         0
5        <NA>               <NA>                  <NA>         0         0
6 3 7-8 hours        2 1-2 hours multiple types of pet         0         0
  big5_open big5_con big5_agr big5_neu big5_ext       pswq      iou mfq_26
1  5.333333 6.000000 4.333333 6.000000 2.000000  2.3094514 3.185185   4.20
2  5.333333 3.333333 4.333333 6.666667 1.666667  0.8509744 4.000000   3.35
3  5.000000 5.333333 6.666667 4.000000 6.000000 -1.1235082 1.592593   4.65
4  6.000000 5.666667 4.666667 4.000000 5.000000  1.1626810 3.370370   4.65
5        NA       NA       NA       NA       NA         NA       NA     NA
6  5.000000 6.000000 6.333333 2.666667       NA -0.3424552 1.703704   4.50
  mfq_state rse school_covid_support school_att pas_covid  pss      phq
1     3.625 2.3                   NA         NA  3.222222 3.25 1.333333
2     3.000 1.6                   NA         NA  4.555556 3.75 3.333333
3     5.875 3.9                   NA         NA  3.333333 1.00 1.000000
4     4.000 1.7                   NA         NA  4.222222 3.25 2.333333
5        NA  NA                   NA         NA        NA   NA       NA
6     4.625 3.9                   NA         NA  3.222222 2.00 1.111111
       gad   edeq12 brs   swemws isolation  support
1 1.857143 1.583333  NA 2.857143      2.25 2.500000
2 3.857143 1.833333  NA 2.285714      3.50 2.166667
3 1.142857 1.000000  NA 4.285714      1.00 5.000000
4 2.000000 1.666667  NA 3.285714      2.50 2.500000
5       NA       NA  NA       NA        NA       NA
6 1.428571 1.416667  NA 4.000000      1.75 3.666667
 str(df)
'data.frame':   2073 obs. of  40 variables:
 $ X                   : int  1 20 30 31 32 33 48 49 57 58 ...
 $ gender              : chr  "female" "male" "female" "female" ...
 $ trans               : chr  "no" "no" "no" "no" ...
 $ sexual_orientation  : chr  "Heterosexual/Straight" "Heterosexual/Straight" "Heterosexual/Straight" "Heterosexual/Straight" ...
 $ ethnicity           : chr  "White - British, Irish, other" "White - British, Irish, other" "White - British, Irish, other" "White - British, Irish, other" ...
 $ relationship_status : chr  "In a relationship/married and cohabiting" "Prefer not to say" "Prefer not to say" "In a relationship/married and cohabiting" ...
 $ age                 : chr  NA "1 under 18" "1 under 18" "4 between 36 and 45" ...
 $ urban_rural         : chr  "city" "city" "city" "town" ...
 $ income              : chr  "3 high" NA NA "2 middle" ...
 $ education           : chr  "6 graduate degree or higher" "prefer not to say" "2 equivalent to high school completion" "5 undergraduate degree" ...
 $ employment          : chr  "3 employed" "1 high school equivalent" "1 high school equivalent" "3 employed" ...
 $ treatment           : chr  "no psychological disorders" "in treatment" "not in treatment" "no psychological disorders" ...
 $ health              : chr  "something else or not applicable" "something else or not applicable" "something else or not applicable" "two conditions" ...
 $ mhealth             : chr  "none or NA" "anxiety disorder" "none or NA" "none or NA" ...
 $ sleep_hours         : chr  "3 7-8 hours" "2 5-6 hours" "3 7-8 hours" "2 5-6 hours" ...
 $ exercise_cat        : chr  "1 less than 1 hour" "2 1-2 hours" "3 2-5 hours" "2 1-2 hours" ...
 $ pet                 : chr  "cat" "cat" "dog" "no pets" ...
 $ covid_pos           : int  0 0 0 0 0 0 0 0 0 0 ...
 $ covid_neg           : int  0 0 0 0 0 0 0 0 0 0 ...
 $ big5_open           : num  5.33 5.33 5 6 NA ...
 $ big5_con            : num  6 3.33 5.33 5.67 NA ...
 $ big5_agr            : num  4.33 4.33 6.67 4.67 NA ...
 $ big5_neu            : num  6 6.67 4 4 NA ...
 $ big5_ext            : num  2 1.67 6 5 NA ...
 $ pswq                : num  2.309 0.851 -1.124 1.163 NA ...
 $ iou                 : num  3.19 4 1.59 3.37 NA ...
 $ mfq_26              : num  4.2 3.35 4.65 4.65 NA 4.5 NA 4.3 5.25 4.45 ...
 $ mfq_state           : num  3.62 3 5.88 4 NA ...
 $ rse                 : num  2.3 1.6 3.9 1.7 NA 3.9 NA 2.4 1.8 NA ...
 $ school_covid_support: num  NA NA NA NA NA NA NA NA NA NA ...
 $ school_att          : num  NA NA NA NA NA NA NA NA NA NA ...
 $ pas_covid           : num  3.22 4.56 3.33 4.22 NA ...
 $ pss                 : num  3.25 3.75 1 3.25 NA 2 NA 2 4 1.25 ...
 $ phq                 : num  1.33 3.33 1 2.33 NA ...
 $ gad                 : num  1.86 3.86 1.14 2 NA ...
 $ edeq12              : num  1.58 1.83 1 1.67 NA ...
 $ brs                 : num  NA NA NA NA NA NA NA NA NA NA ...
 $ swemws              : num  2.86 2.29 4.29 3.29 NA ...
 $ isolation           : num  2.25 3.5 1 2.5 NA 1.75 NA 2 1.25 1 ...
 $ support             : num  2.5 2.17 5 2.5 NA ...

Subsetting Data

# # use the codebook you created in the codebook activity to get the names of your variables (first column)
# # enter this list of names in the select=c() argument to subset those columns from the dataframe
d <- subset(df, select=c(pet, mhealth, iou, rse, phq, pss))

Missing Data

# # use the gg_miss_upset() command for a visualization of your missing data
gg_miss_upset(d, nsets = 6)

# 
# # use the na.omit() command to create a new dataframe in which any participants with missing data are dropped from the dataframe
d2 <- na.omit(d)
# 
# # use a bit of math to see what percentage of participants had missing data
2073-1201
[1] 872
872/2073
[1] 0.4206464

Exporting Data

# # last step is to export the data after you've dropped NAs
write.csv(d2, file="Data/labdata.csv", row.names = F)
# NAME MYDATA INSTEAD OF LABDATA ON HW

Write-Up

In this section, you should create a write-up of what you did, using language that would be suitable for a manuscript. Make sure you include: selecting six variables to focus on, dropping participants with missing data, your percentage of how many participants were dropped, and your final number of participants. I have given you a template you can follow below – you should delete the other text in this section and only include your write-up.

Remember – this should be writing appropriate for a manuscript! We use shortened abbreviations when referring to variables in R, but these labels don’t make sense to include in your manuscript. You should include something more descriptive for your writeup.

We selected six variables from the [placeholder] dataset to focus on in our analysis: [placeholder]. Participants with missing data ([placeholder]%) in these six variables were dropped from our analysis, leaving us a final sample of n = [placeholder].