library(readxl)
data<-read_xlsx("C:/Users/ASUS R3/Downloads/jatim for anreg/kualitas hidup/DATA FOR ANREG.xlsx")
data
## # A tibble: 38 × 9
## WILAYAH IPM RLS HLS PDRB PP UHH IPLM TPT
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Pacitan 70.2 70.2 12.7 33149. 9681 74.6 65.2 3.65
## 2 Ponorogo 72.5 72.5 13.8 26314. 10658 75.1 58.1 5.51
## 3 Trenggalek 71.7 71.7 12.6 30681 10465 75.2 84.2 5.37
## 4 Tulungagung 74.6 74.6 13.3 43297. 11565 75.0 58.4 6.65
## 5 Blitar 72.5 72.5 12.6 35812. 11499 75.1 70.0 5.45
## 6 Kediri 74.0 74.0 13.6 30193. 11952 74.8 66.5 6.83
## 7 Malang 72.2 72.2 13.5 47272. 10791 75.1 48.8 6.57
## 8 Lumajang 67.9 67.9 12.2 35178. 9720 74.4 53.9 4.97
## 9 Jember 68.6 68.6 13.5 36837. 10277 74.0 37.7 4.06
## 10 Banyuwangi 72.6 72.6 13.1 58086. 12820 73.9 65.6 5.26
## # ℹ 28 more rows
colnames(data) <- c("Wilayah", "Y", paste0("X", 1:9))
head(data)
## # A tibble: 6 × 9
## Wilayah Y X1 X2 X3 X4 X5 X6 X7
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Pacitan 70.2 70.2 12.7 33149. 9681 74.6 65.2 3.65
## 2 Ponorogo 72.5 72.5 13.8 26314. 10658 75.1 58.1 5.51
## 3 Trenggalek 71.7 71.7 12.6 30681 10465 75.2 84.2 5.37
## 4 Tulungagung 74.6 74.6 13.3 43297. 11565 75.0 58.4 6.65
## 5 Blitar 72.5 72.5 12.6 35812. 11499 75.1 70.0 5.45
## 6 Kediri 74.0 74.0 13.6 30193. 11952 74.8 66.5 6.83
n<-nrow(data)
plot(data$X1, data$Y,
main = "IPM (%) vs RLS (%)",
xlab = "RLS (tahun)",
ylab = "IPM")
