bike_sharing_data <- read.csv("bike_sharing_data.csv")
dim(bike_sharing_data)
## [1] 17379 13
nrow(bike_sharing_data)
## [1] 17379
ncol(bike_sharing_data)
## [1] 13
str(bike_sharing_data)
## 'data.frame': 17379 obs. of 13 variables:
## $ datetime : chr "1/1/2011 0:00" "1/1/2011 1:00" "1/1/2011 2:00" "1/1/2011 3:00" ...
## $ season : int 1 1 1 1 1 1 1 1 1 1 ...
## $ holiday : int 0 0 0 0 0 0 0 0 0 0 ...
## $ workingday: int 0 0 0 0 0 0 0 0 0 0 ...
## $ weather : int 1 1 1 1 1 2 1 1 1 1 ...
## $ temp : num 9.84 9.02 9.02 9.84 9.84 ...
## $ atemp : num 14.4 13.6 13.6 14.4 14.4 ...
## $ humidity : chr "81" "80" "80" "75" ...
## $ windspeed : num 0 0 0 0 0 ...
## $ casual : int 3 8 5 3 0 0 2 1 1 8 ...
## $ registered: int 13 32 27 10 1 1 0 2 7 6 ...
## $ count : int 16 40 32 13 1 1 2 3 8 14 ...
## $ sources : chr "ad campaign" "www.yahoo.com" "www.google.fi" "AD campaign" ...
bike_sharing_data[6251, "season"]
## [1] 4
bike_sharing_data[6251, 2]
## [1] 4
table(bike_sharing_data$season)
##
## 1 2 3 4
## 4242 4409 4496 4232
sum(bike_sharing_data$season == 1)
## [1] 4242
high_wind_threshold <- 40.23
high_wind_obs <- subset(bike_sharing_data,
season %in% c(1, 2) & windspeed >= high_wind_threshold)
nrow(high_wind_obs)
## [1] 48