OSA analysis

1 participants info

LEARNING EXPS:
OSA 2: N = 102 (no exclusion due to no attention checking)
OSA 3: N = 221 (35 exclusion due to failing both attention checkers)
combined included subs N = 323

SURPRISE & EXPLANATION EXPS:
OSA1: N = 242 (qualtrics, half expected and half unexpected, has attention-checking questions)
OSA4: N = 80 (4 key trials and 9 fillers, has checker questions) (2 excluded)
combined included subs N = 322

2 LEARNING

2.1 all trials


OSA 2 & OSA 3

data_curve_analysis(OSA_learning_core, "score")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 1689.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.2124 -0.9506 -0.7410  0.9548  1.2166 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.0150   0.1225  
 Residual             0.2351   0.4849  
Number of obs: 1156, groups:  subject, 289

Fixed effects:
                    Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)          0.48789    0.02942 1139.70738  16.585   <2e-16 ***
violation_number1    0.01384    0.04034  864.00000   0.343    0.732    
violation_number2    0.04844    0.04034  864.00000   1.201    0.230    
violation_number3   -0.02768    0.04034  864.00000  -0.686    0.493    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.686              
viltn_nmbr2 -0.686  0.500       
viltn_nmbr3 -0.686  0.500  0.500

$emmeans
 violation_number emmean     SE   df lower.CL upper.CL
 0                 0.488 0.0294 1140    0.414    0.561
 1                 0.502 0.0294 1140    0.428    0.575
 2                 0.536 0.0294 1140    0.463    0.610
 3                 0.460 0.0294 1140    0.387    0.534

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.0138 0.0403 864  -0.343  1.0000
 violation_number0 - violation_number2  -0.0484 0.0403 864  -1.201  1.0000
 violation_number0 - violation_number3   0.0277 0.0403 864   0.686  1.0000
 violation_number1 - violation_number2  -0.0346 0.0403 864  -0.858  1.0000
 violation_number1 - violation_number3   0.0415 0.0403 864   1.029  1.0000
 violation_number2 - violation_number3   0.0761 0.0403 864   1.887  0.3568

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 248540, p-value = 0.7499
alternative hypothesis: two.sided

OSA2 only

data_curve_analysis(filter(OSA_learning_core, exp == "OSA2"), "score")
boundary (singular) fit: see help('isSingular')
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 402.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.2718 -1.0352  0.7394  0.8651  1.0352 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.0000   0.0000  
 Residual             0.2472   0.4972  
Number of obs: 272, groups:  subject, 68

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         0.48529    0.06029 268.00000   8.049 2.73e-14 ***
violation_number1   0.14706    0.08527 268.00000   1.725   0.0857 .  
violation_number2   0.10294    0.08527 268.00000   1.207   0.2284    
violation_number3   0.02941    0.08527 268.00000   0.345   0.7304    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.707              
viltn_nmbr2 -0.707  0.500       
viltn_nmbr3 -0.707  0.500  0.500
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')


$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.485 0.0603 268    0.334    0.637
 1                 0.632 0.0603 268    0.481    0.784
 2                 0.588 0.0603 268    0.437    0.740
 3                 0.515 0.0603 268    0.363    0.666

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.1471 0.0853 201  -1.725  0.5167
 violation_number0 - violation_number2  -0.1029 0.0853 201  -1.207  0.9150
 violation_number0 - violation_number3  -0.0294 0.0853 201  -0.345  1.0000
 violation_number1 - violation_number2   0.0441 0.0853 201   0.517  1.0000
 violation_number1 - violation_number3   0.1176 0.0853 201   1.380  0.8460
 violation_number2 - violation_number3   0.0735 0.0853 201   0.862  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 13974, p-value = 0.8882
alternative hypothesis: two.sided

OSA3 only

data_curve_analysis(filter(OSA_learning_core, exp == "OSA3"), "score")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 1290.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.2340 -0.9373 -0.6648  0.9894  1.2861 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.02027  0.1424  
 Residual             0.22955  0.4791  
Number of obs: 884, groups:  subject, 221

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         0.48869    0.03362 862.95230  14.535   <2e-16 ***
violation_number1  -0.02715    0.04558 659.99999  -0.596    0.552    
violation_number2   0.03167    0.04558 659.99999   0.695    0.487    
violation_number3  -0.04525    0.04558 659.99999  -0.993    0.321    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.678              
viltn_nmbr2 -0.678  0.500       
viltn_nmbr3 -0.678  0.500  0.500

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.489 0.0336 863    0.405    0.573
 1                 0.462 0.0336 863    0.377    0.546
 2                 0.520 0.0336 863    0.436    0.605
 3                 0.443 0.0336 863    0.359    0.528

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1   0.0271 0.0456 660   0.596  1.0000
 violation_number0 - violation_number2  -0.0317 0.0456 660  -0.695  1.0000
 violation_number0 - violation_number3   0.0452 0.0456 660   0.993  1.0000
 violation_number1 - violation_number2  -0.0588 0.0456 660  -1.291  0.9865
 violation_number1 - violation_number3   0.0181 0.0456 660   0.397  1.0000
 violation_number2 - violation_number3   0.0769 0.0456 660   1.688  0.5516

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 144644, p-value = 0.6581
alternative hypothesis: two.sided

2.2 first block (first three trials)


OSA 2 & OSA 3

data_curve_analysis(filter(OSA_learning_core, trial_id <= 3), "score")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 850.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.1500 -0.9106 -0.8336  1.0227  1.1408 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.007668 0.08757 
 Residual             0.241433 0.49136 
Number of obs: 578, groups:  subject, 289

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)       4.396e-01  4.427e-02 5.739e+02   9.930   <2e-16 ***
violation_number1 5.613e-02  6.020e-02 5.317e+02   0.932   0.3515    
violation_number2 1.256e-01  5.985e-02 4.736e+02   2.098   0.0364 *  
violation_number3 6.044e-03  5.950e-02 5.389e+02   0.102   0.9191    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.730              
viltn_nmbr2 -0.730  0.537       
viltn_nmbr3 -0.739  0.546  0.545

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.440 0.0444 574    0.328    0.551
 1                 0.496 0.0412 574    0.392    0.599
 2                 0.565 0.0410 574    0.463    0.668
 3                 0.446 0.0402 574    0.345    0.546

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1 -0.05614 0.0604 532  -0.930  1.0000
 violation_number0 - violation_number2 -0.12559 0.0600 474  -2.093  0.2210
 violation_number0 - violation_number3 -0.00604 0.0597 539  -0.101  1.0000
 violation_number1 - violation_number2 -0.06945 0.0579 529  -1.199  0.9248
 violation_number1 - violation_number3  0.05009 0.0572 456   0.876  1.0000
 violation_number2 - violation_number3  0.11954 0.0571 510   2.093  0.2210

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 63033, p-value = 0.8226
alternative hypothesis: two.sided

OSA2 only

data_curve_analysis(filter(OSA_learning_core, trial_id <= 3, exp == "OSA2"), "score")
boundary (singular) fit: see help('isSingular')
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 203.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.4624 -0.9838  0.5571  0.8803  1.0445 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.0000   0.0000  
 Residual             0.2452   0.4952  
Number of obs: 136, groups:  subject, 68

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)       4.828e-01  9.195e-02 1.320e+02   5.250 5.92e-07 ***
violation_number1 8.134e-02  1.214e-01 1.320e+02   0.670   0.5041    
violation_number2 2.414e-01  1.300e-01 1.320e+02   1.856   0.0657 .  
violation_number3 4.421e-03  1.214e-01 1.320e+02   0.036   0.9710    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.757              
viltn_nmbr2 -0.707  0.536       
viltn_nmbr3 -0.757  0.574  0.536
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')


$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.483 0.0920 132    0.250    0.716
 1                 0.564 0.0793 132    0.363    0.765
 2                 0.724 0.0920 132    0.491    0.957
 3                 0.487 0.0793 132    0.286    0.688

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1 -0.08134 0.121 132  -0.670  1.0000
 violation_number0 - violation_number2 -0.24138 0.130  66  -1.856  0.3395
 violation_number0 - violation_number3 -0.00442 0.121 132  -0.036  1.0000
 violation_number1 - violation_number2 -0.16004 0.121 132  -1.318  0.7591
 violation_number1 - violation_number3  0.07692 0.112  66   0.686  1.0000
 violation_number2 - violation_number3  0.23696 0.121 132   1.952  0.3187

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 3491, p-value = 0.8516
alternative hypothesis: two.sided

OSA3 only

data_curve_analysis(filter(OSA_learning_core, trial_id <= 3, exp == "OSA3"), "score")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 653.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.0854 -0.8890 -0.7937  1.0609  1.1706 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.01159  0.1077  
 Residual             0.23793  0.4878  
Number of obs: 442, groups:  subject, 221

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)       4.270e-01  5.042e-02 4.378e+02   8.468 3.81e-16 ***
violation_number1 4.318e-02  6.907e-02 3.823e+02   0.625    0.532    
violation_number2 1.004e-01  6.749e-02 3.956e+02   1.488    0.138    
violation_number3 4.872e-03  6.799e-02 3.923e+02   0.072    0.943    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.719              
viltn_nmbr2 -0.738  0.538       
viltn_nmbr3 -0.732  0.533  0.549

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.427 0.0506 438    0.300    0.554
 1                 0.470 0.0482 438    0.349    0.591
 2                 0.527 0.0457 438    0.413    0.642
 3                 0.432 0.0465 438    0.315    0.548

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1 -0.04318 0.0693 382  -0.623  1.0000
 violation_number0 - violation_number2 -0.10042 0.0678 396  -1.482  0.8352
 violation_number0 - violation_number3 -0.00487 0.0683 392  -0.071  1.0000
 violation_number1 - violation_number2 -0.05723 0.0659 382  -0.868  1.0000
 violation_number1 - violation_number3  0.03831 0.0665 391   0.576  1.0000
 violation_number2 - violation_number3  0.09554 0.0646 361   1.480  0.8352

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 36802, p-value = 0.8719
alternative hypothesis: two.sided

2.3 first trial


OSA 2 & OSA 3

data_curve_analysis(filter(OSA_learning_core, trial_id == 1), "score", use_lmer = FALSE)
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary

Call:
lm(formula = formula_lm, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.6140 -0.5957  0.3860  0.3966  0.5849 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.595745   0.072116   8.261 1.58e-14 ***
violation_number1  0.018290   0.097411   0.188   0.8512    
violation_number2  0.007704   0.097031   0.079   0.9368    
violation_number3 -0.180650   0.099059  -1.824   0.0696 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4944 on 211 degrees of freedom
Multiple R-squared:  0.02731,   Adjusted R-squared:  0.01348 
F-statistic: 1.975 on 3 and 211 DF,  p-value: 0.1188


$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.596 0.0721 211    0.414    0.777
 1                 0.614 0.0655 211    0.449    0.779
 2                 0.603 0.0649 211    0.440    0.767
 3                 0.415 0.0679 211    0.244    0.586

Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.0183 0.0974 211  -0.188  1.0000
 violation_number0 - violation_number2  -0.0077 0.0970 211  -0.079  1.0000
 violation_number0 - violation_number3   0.1807 0.0991 211   1.824  0.2785
 violation_number1 - violation_number2   0.0106 0.0922 211   0.115  1.0000
 violation_number1 - violation_number3   0.1989 0.0943 211   2.109  0.2169
 violation_number2 - violation_number3   0.1884 0.0939 211   2.005  0.2313

P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 7851, p-value = 0.1178
alternative hypothesis: two.sided

OSA2 only

data_curve_analysis(filter(OSA_learning_core, trial_id == 1, exp == "OSA2"), "score", use_lmer = FALSE)
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary

Call:
lm(formula = formula_lm, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.6667 -0.5600  0.3431  0.3571  0.4400 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.66667    0.14399   4.630 1.84e-05 ***
violation_number1 -0.10667    0.17517  -0.609    0.545    
violation_number2 -0.01961    0.18807  -0.104    0.917    
violation_number3 -0.02381    0.19623  -0.121    0.904    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4988 on 64 degrees of freedom
Multiple R-squared:  0.008439,  Adjusted R-squared:  -0.03804 
F-statistic: 0.1816 on 3 and 64 DF,  p-value: 0.9085


$emmeans
 violation_number emmean     SE df lower.CL upper.CL
 0                 0.667 0.1440 64    0.297    1.037
 1                 0.560 0.0998 64    0.304    0.816
 2                 0.647 0.1210 64    0.336    0.958
 3                 0.643 0.1330 64    0.300    0.985

Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE df t.ratio p.value
 violation_number0 - violation_number1   0.1067 0.175 64   0.609  1.0000
 violation_number0 - violation_number2   0.0196 0.188 64   0.104  1.0000
 violation_number0 - violation_number3   0.0238 0.196 64   0.121  1.0000
 violation_number1 - violation_number2  -0.0871 0.157 64  -0.555  1.0000
 violation_number1 - violation_number3  -0.0829 0.167 64  -0.498  1.0000
 violation_number2 - violation_number3   0.0042 0.180 64   0.023  1.0000

P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 855, p-value = 0.8901
alternative hypothesis: two.sided

OSA3 only

data_curve_analysis(filter(OSA_learning_core, trial_id == 1, exp == "OSA3"), "score", use_lmer = FALSE)
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary

Call:
lm(formula = formula_lm, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.6562 -0.5714  0.3438  0.4146  0.6667 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.57143    0.08291   6.892 1.63e-10 ***
violation_number1  0.08482    0.11997   0.707   0.4807    
violation_number2  0.01394    0.11289   0.123   0.9019    
violation_number3 -0.23810    0.11421  -2.085   0.0389 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4905 on 143 degrees of freedom
Multiple R-squared:  0.0602,    Adjusted R-squared:  0.04049 
F-statistic: 3.054 on 3 and 143 DF,  p-value: 0.03051


$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.571 0.0829 143    0.362    0.781
 1                 0.656 0.0867 143    0.437    0.876
 2                 0.585 0.0766 143    0.392    0.779
 3                 0.333 0.0785 143    0.135    0.532

Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.0848 0.120 143  -0.707  1.0000
 violation_number0 - violation_number2  -0.0139 0.113 143  -0.123  1.0000
 violation_number0 - violation_number3   0.2381 0.114 143   2.085  0.1555
 violation_number1 - violation_number2   0.0709 0.116 143   0.613  1.0000
 violation_number1 - violation_number3   0.3229 0.117 143   2.760  0.0392
 violation_number2 - violation_number3   0.2520 0.110 143   2.297  0.1153

P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 3485, p-value = 0.05463
alternative hypothesis: two.sided

3 SURPRISE

3.1 preprocessing

3.2 plots and models

Coordinate system already present. Adding new coordinate system, which will
replace the existing one.
Coordinate system already present. Adding new coordinate system, which will
replace the existing one.
Coordinate system already present. Adding new coordinate system, which will
replace the existing one.


OSA 1 & OSA 4

data_curve_analysis(OSA_surprise_core, "surprise")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 4692.9

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.75591 -0.67017 -0.03989  0.71665  3.10394 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.8476   0.9207  
 Residual             1.6431   1.2818  
Number of obs: 1296, groups:  subject, 324

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         1.23148    0.08768 958.85926   14.05   <2e-16 ***
violation_number1   2.47531    0.10071 969.00000   24.58   <2e-16 ***
violation_number2   3.18827    0.10071 969.00000   31.66   <2e-16 ***
violation_number3   3.48148    0.10071 969.00000   34.57   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.574              
viltn_nmbr2 -0.574  0.500       
viltn_nmbr3 -0.574  0.500  0.500

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                  1.23 0.0877 959     1.01     1.45
 1                  3.71 0.0877 959     3.49     3.93
 2                  4.42 0.0877 959     4.20     4.64
 3                  4.71 0.0877 959     4.49     4.93

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1   -2.475 0.101 969 -24.578  <.0001
 violation_number0 - violation_number2   -3.188 0.101 969 -31.658  <.0001
 violation_number0 - violation_number3   -3.481 0.101 969 -34.569  <.0001
 violation_number1 - violation_number2   -0.713 0.101 969  -7.079  <.0001
 violation_number1 - violation_number3   -1.006 0.101 969  -9.991  <.0001
 violation_number2 - violation_number3   -0.293 0.101 969  -2.911  0.0037

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 487938, p-value < 2.2e-16
alternative hypothesis: two.sided

OSA 1 only

data_curve_analysis(filter(OSA_surprise_core, exp == "OSA1"), "surprise")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 3478.1

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.63159 -0.60793 -0.00032  0.66600  3.09224 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.7776   0.8818  
 Residual             1.6141   1.2705  
Number of obs: 968, groups:  subject, 242

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         1.19835    0.09941 731.90328   12.05   <2e-16 ***
violation_number1   2.61570    0.11550 723.00000   22.65   <2e-16 ***
violation_number2   3.38017    0.11550 723.00000   29.27   <2e-16 ***
violation_number3   3.72314    0.11550 723.00000   32.23   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.581              
viltn_nmbr2 -0.581  0.500       
viltn_nmbr3 -0.581  0.500  0.500

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                  1.20 0.0994 732    0.949     1.45
 1                  3.81 0.0994 732    3.565     4.06
 2                  4.58 0.0994 732    4.330     4.83
 3                  4.92 0.0994 732    4.673     5.17

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1   -2.616 0.115 723 -22.647  <.0001
 violation_number0 - violation_number2   -3.380 0.115 723 -29.266  <.0001
 violation_number0 - violation_number3   -3.723 0.115 723 -32.235  <.0001
 violation_number1 - violation_number2   -0.764 0.115 723  -6.619  <.0001
 violation_number1 - violation_number3   -1.107 0.115 723  -9.588  <.0001
 violation_number2 - violation_number3   -0.343 0.115 723  -2.970  0.0031

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 276668, p-value < 2.2e-16
alternative hypothesis: two.sided

OSA 4 only

data_curve_analysis(filter(OSA_surprise_core, exp == "OSA4"), "surprise")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 1191.7

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.46457 -0.66872 -0.02504  0.53703  2.80926 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.9547   0.9771  
 Residual             1.6214   1.2733  
Number of obs: 328, groups:  subject, 82

Fixed effects:
                  Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)         1.3293     0.1772 229.4576    7.50 1.39e-12 ***
violation_number1   2.0610     0.1989 243.0000   10.36  < 2e-16 ***
violation_number2   2.6220     0.1989 243.0000   13.19  < 2e-16 ***
violation_number3   2.7683     0.1989 243.0000   13.92  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.561              
viltn_nmbr2 -0.561  0.500       
viltn_nmbr3 -0.561  0.500  0.500

$emmeans
 violation_number emmean    SE  df lower.CL upper.CL
 0                  1.33 0.177 229    0.883     1.78
 1                  3.39 0.177 229    2.944     3.84
 2                  3.95 0.177 229    3.505     4.40
 3                  4.10 0.177 229    3.651     4.54

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1   -2.061 0.199 243 -10.364  <.0001
 violation_number0 - violation_number2   -2.622 0.199 243 -13.185  <.0001
 violation_number0 - violation_number3   -2.768 0.199 243 -13.921  <.0001
 violation_number1 - violation_number2   -0.561 0.199 243  -2.821  0.0104
 violation_number1 - violation_number3   -0.707 0.199 243  -3.557  0.0014
 violation_number2 - violation_number3   -0.146 0.199 243  -0.736  0.4625

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 29824, p-value < 2.2e-16
alternative hypothesis: two.sided

4 EXPLANATION

4.1 NUMBER OF EXPLANATION

4.1.1 all explanations included

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 2 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).


OSA 1 & OSA 4

data_curve_analysis(OSA_explan_core, "explanation_num")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 1319

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.5850 -0.0819 -0.0292  0.4344  4.5803 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.05712  0.2390  
 Residual             0.12294  0.3506  
Number of obs: 1294, groups:  subject, 324

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         0.65338    0.02360 993.40235  27.680   <2e-16 ***
violation_number1   0.28489    0.02757 967.71095  10.332   <2e-16 ***
violation_number2   0.27872    0.02757 967.71095  10.108   <2e-16 ***
violation_number3   0.26641    0.02760 968.08540   9.653   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.585              
viltn_nmbr2 -0.585  0.501       
viltn_nmbr3 -0.585  0.500  0.500

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.653 0.0236 993    0.594    0.712
 1                 0.938 0.0236 991    0.879    0.997
 2                 0.932 0.0236 991    0.873    0.991
 3                 0.920 0.0236 993    0.861    0.979

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1 -0.28489 0.0276 967 -10.332  <.0001
 violation_number0 - violation_number2 -0.27872 0.0276 967 -10.108  <.0001
 violation_number0 - violation_number3 -0.26641 0.0276 968  -9.653  <.0001
 violation_number1 - violation_number2  0.00617 0.0275 967   0.224  1.0000
 violation_number1 - violation_number3  0.01848 0.0276 967   0.670  1.0000
 violation_number2 - violation_number3  0.01231 0.0276 967   0.446  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 353566, p-value = 1.359e-07
alternative hypothesis: two.sided

OSA 1 only

data_curve_analysis(filter(OSA_explan_core, exp == "OSA1"), "explanation_num")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 1127.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.2858 -0.0718 -0.0214  0.3934  4.5101 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.06114  0.2473  
 Residual             0.14396  0.3794  
Number of obs: 967, groups:  subject, 242

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         0.53552    0.02916 762.43756   18.36   <2e-16 ***
violation_number1   0.35704    0.03453 722.57683   10.34   <2e-16 ***
violation_number2   0.36531    0.03453 722.57683   10.58   <2e-16 ***
violation_number3   0.34878    0.03453 722.57683   10.10   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.594              
viltn_nmbr2 -0.594  0.501       
viltn_nmbr3 -0.594  0.501  0.501

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                 0.536 0.0292 762    0.463    0.609
 1                 0.893 0.0291 760    0.820    0.965
 2                 0.901 0.0291 760    0.828    0.974
 3                 0.884 0.0291 760    0.811    0.957

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1 -0.35704 0.0345 722 -10.339  <.0001
 violation_number0 - violation_number2 -0.36531 0.0345 722 -10.578  <.0001
 violation_number0 - violation_number3 -0.34878 0.0345 722 -10.099  <.0001
 violation_number1 - violation_number2 -0.00826 0.0345 722  -0.240  1.0000
 violation_number1 - violation_number3  0.00826 0.0345 722   0.240  1.0000
 violation_number2 - violation_number3  0.01653 0.0345 722   0.479  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 205154, p-value = 8.124e-10
alternative hypothesis: two.sided

OSA 4 only

data_curve_analysis(filter(OSA_explan_core, exp == "OSA4"), "explanation_num")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: -26.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.4984 -0.2778 -0.0415  0.0776  7.1291 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.01164  0.1079  
 Residual             0.04241  0.2059  
Number of obs: 327, groups:  subject, 82

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         1.00000    0.02567 283.78402  38.951   <2e-16 ***
violation_number1   0.07317    0.03216 242.24543   2.275   0.0238 *  
violation_number2   0.02439    0.03216 242.24543   0.758   0.4490    
violation_number3   0.02451    0.03228 242.71322   0.759   0.4483    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.626              
viltn_nmbr2 -0.626  0.500       
viltn_nmbr3 -0.624  0.498  0.498

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                  1.00 0.0257 284    0.935     1.06
 1                  1.07 0.0257 284    1.009     1.14
 2                  1.02 0.0257 284    0.960     1.09
 3                  1.02 0.0258 285    0.960     1.09

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1 -0.07317 0.0322 242  -2.275  0.1426
 violation_number0 - violation_number2 -0.02439 0.0322 242  -0.758  1.0000
 violation_number0 - violation_number3 -0.02451 0.0323 242  -0.759  1.0000
 violation_number1 - violation_number2  0.04878 0.0322 242   1.517  0.6532
 violation_number1 - violation_number3  0.04866 0.0323 242   1.508  0.6532
 violation_number2 - violation_number3 -0.00012 0.0323 242  -0.004  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 20017, p-value = 0.9733
alternative hypothesis: two.sided

4.1.2 no give up answers

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 2 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).


OSA 1 & OSA 4

data_curve_analysis(filter(OSA_explan_core, giveup == FALSE), "explanation_num")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 90.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.0959 -0.2651 -0.0803  0.0257  6.2645 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.02145  0.1465  
 Residual             0.04853  0.2203  
Number of obs: 751, groups:  subject, 282

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         1.00888    0.01830 694.01560  55.140  < 2e-16 ***
violation_number1   0.08071    0.02314 557.70006   3.488 0.000526 ***
violation_number2   0.04011    0.02341 560.47616   1.714 0.087146 .  
violation_number3   0.01663    0.02392 558.25970   0.695 0.487136    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.616              
viltn_nmbr2 -0.609  0.501       
viltn_nmbr3 -0.592  0.489  0.493

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                  1.01 0.0183 701    0.963     1.05
 1                  1.09 0.0187 703    1.043     1.14
 2                  1.05 0.0190 708    1.001     1.10
 3                  1.03 0.0197 721    0.976     1.07

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.0807 0.0232 578  -3.485  0.0032
 violation_number0 - violation_number2  -0.0401 0.0234 581  -1.712  0.3266
 violation_number0 - violation_number3  -0.0166 0.0239 579  -0.695  0.6503
 violation_number1 - violation_number2   0.0406 0.0233 542   1.744  0.3266
 violation_number1 - violation_number3   0.0641 0.0238 544   2.690  0.0368
 violation_number2 - violation_number3   0.0235 0.0238 526   0.985  0.6503

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 105853, p-value = 0.9461
alternative hypothesis: two.sided

OSA 1 only

data_curve_analysis(filter(OSA_explan_core, giveup == FALSE, exp == "OSA1"), "explanation_num")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 92

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5260 -0.2519 -0.0855  0.0397  6.0071 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.02828  0.1682  
 Residual             0.04824  0.2196  
Number of obs: 460, groups:  subject, 200

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         1.01309    0.02438 436.17550  41.556   <2e-16 ***
violation_number1   0.08010    0.03049 343.46990   2.627    0.009 ** 
violation_number2   0.04708    0.03095 344.72466   1.521    0.129    
violation_number3   0.01170    0.03201 343.29845   0.366    0.715    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.630              
viltn_nmbr2 -0.621  0.529       
viltn_nmbr3 -0.597  0.514  0.522

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                  1.01 0.0244 440    0.952     1.07
 1                  1.09 0.0243 438    1.032     1.15
 2                  1.06 0.0248 441    0.998     1.12
 3                  1.02 0.0263 450    0.959     1.09

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.0801 0.0305 360  -2.623  0.0546
 violation_number0 - violation_number2  -0.0471 0.0310 361  -1.519  0.5190
 violation_number0 - violation_number3  -0.0117 0.0321 360  -0.365  0.7559
 violation_number1 - violation_number2   0.0330 0.0299 318   1.106  0.7559
 violation_number1 - violation_number3   0.0684 0.0309 317   2.215  0.1375
 violation_number2 - violation_number3   0.0354 0.0308 302   1.148  0.7559

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 39716, p-value = 0.949
alternative hypothesis: two.sided

OSA 4 only

data_curve_analysis(filter(OSA_explan_core, giveup == FALSE, exp == "OSA4"), "explanation_num")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 10.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2859 -0.2930 -0.0443  0.0741  6.7585 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.01273  0.1128  
 Residual             0.04755  0.2181  
Number of obs: 291, groups:  subject, 82

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         0.99988    0.02727 258.80613  36.668   <2e-16 ***
violation_number1   0.08144    0.03566 218.12596   2.284   0.0233 *  
violation_number2   0.02720    0.03586 220.00399   0.759   0.4489    
violation_number3   0.02665    0.03601 220.17750   0.740   0.4601    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.604              
viltn_nmbr2 -0.602  0.466       
viltn_nmbr3 -0.599  0.461  0.462

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                  1.00 0.0273 257    0.931     1.07
 1                  1.08 0.0290 266    1.008     1.15
 2                  1.03 0.0292 267    0.954     1.10
 3                  1.03 0.0294 268    0.953     1.10

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                               estimate     SE  df t.ratio p.value
 violation_number0 - violation_number1 -0.081440 0.0357 214  -2.283  0.1404
 violation_number0 - violation_number2 -0.027198 0.0359 216  -0.758  1.0000
 violation_number0 - violation_number3 -0.026645 0.0360 217  -0.740  1.0000
 violation_number1 - violation_number2  0.054242 0.0370 214   1.467  0.7126
 violation_number1 - violation_number3  0.054795 0.0372 217   1.472  0.7126
 violation_number2 - violation_number3  0.000553 0.0373 215   0.015  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 15880, p-value = 0.9751
alternative hypothesis: two.sided

4.2 EVALUATION OF EXPLANATIONS

4.2.1 all explanations included

Warning: Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).


OSA 1 & OSA 4

data_curve_analysis(OSA_explan_core, "explanation_eval")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 4939.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.1030 -0.6957 -0.1337  0.7501  2.5690 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.8723   0.934   
 Residual             2.0598   1.435   
Number of obs: 1295, groups:  subject, 324

Fixed effects:
                    Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)          1.73148    0.09513 1019.96941  18.201  < 2e-16 ***
violation_number1    0.46605    0.11276  967.61932   4.133 3.89e-05 ***
violation_number2   -0.13889    0.11276  967.61932  -1.232    0.218    
violation_number3   -0.47387    0.11286  968.01058  -4.199 2.93e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.593              
viltn_nmbr2 -0.593  0.500       
viltn_nmbr3 -0.592  0.500  0.500

$emmeans
 violation_number emmean     SE   df lower.CL upper.CL
 0                  1.73 0.0951 1020     1.49     1.97
 1                  2.20 0.0951 1020     1.96     2.44
 2                  1.59 0.0951 1020     1.35     1.83
 3                  1.26 0.0953 1022     1.02     1.50

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1   -0.466 0.113 968  -4.133  0.0001
 violation_number0 - violation_number2    0.139 0.113 968   1.232  0.2184
 violation_number0 - violation_number3    0.474 0.113 968   4.199  0.0001
 violation_number1 - violation_number2    0.605 0.113 968   5.365  <.0001
 violation_number1 - violation_number3    0.940 0.113 968   8.328  <.0001
 violation_number2 - violation_number3    0.335 0.113 968   2.968  0.0061

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 284360, p-value = 6.384e-05
alternative hypothesis: two.sided

OSA 1 only

data_curve_analysis(filter(OSA_explan_core, exp == "OSA1"), "explanation_eval")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 3704.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.9280 -0.6998 -0.3243  0.7641  2.5307 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.7456   0.8635  
 Residual             2.1475   1.4654  
Number of obs: 968, groups:  subject, 242

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         1.42975    0.10934 803.81919  13.076  < 2e-16 ***
violation_number1   0.49174    0.13322 723.00000   3.691  0.00024 ***
violation_number2  -0.02479    0.13322 723.00000  -0.186  0.85241    
violation_number3  -0.40496    0.13322 723.00000  -3.040  0.00245 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.609              
viltn_nmbr2 -0.609  0.500       
viltn_nmbr3 -0.609  0.500  0.500

$emmeans
 violation_number emmean    SE  df lower.CL upper.CL
 0                  1.43 0.109 804    1.156     1.70
 1                  1.92 0.109 804    1.648     2.20
 2                  1.40 0.109 804    1.131     1.68
 3                  1.02 0.109 804    0.751     1.30

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.4917 0.133 723  -3.691  0.0010
 violation_number0 - violation_number2   0.0248 0.133 723   0.186  0.8524
 violation_number0 - violation_number3   0.4050 0.133 723   3.040  0.0074
 violation_number1 - violation_number2   0.5165 0.133 723   3.877  0.0006
 violation_number1 - violation_number3   0.8967 0.133 723   6.731  <.0001
 violation_number2 - violation_number3   0.3802 0.133 723   2.854  0.0089

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 162100, p-value = 0.005192
alternative hypothesis: two.sided

OSA 4 only

data_curve_analysis(filter(OSA_explan_core, exp == "OSA4"), "explanation_eval")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 1186.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.3788 -0.7247  0.0771  0.7473  2.2556 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.5334   0.7304  
 Residual             1.7929   1.3390  
Number of obs: 327, groups:  subject, 82

Fixed effects:
                  Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)         2.6220     0.1684 279.0081  15.567  < 2e-16 ***
violation_number1   0.3902     0.2091 241.8397   1.866  0.06323 .  
violation_number2  -0.4756     0.2091 241.8397  -2.274  0.02382 *  
violation_number3  -0.6755     0.2099 242.2945  -3.219  0.00146 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.621              
viltn_nmbr2 -0.621  0.500       
viltn_nmbr3 -0.619  0.498  0.498

$emmeans
 violation_number emmean    SE  df lower.CL upper.CL
 0                  2.62 0.168 279     2.20     3.05
 1                  3.01 0.168 279     2.59     3.44
 2                  2.15 0.168 279     1.72     2.57
 3                  1.95 0.169 281     1.52     2.37

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1   -0.390 0.209 242  -1.866  0.1265
 violation_number0 - violation_number2    0.476 0.209 242   2.274  0.0715
 violation_number0 - violation_number3    0.675 0.210 242   3.219  0.0059
 violation_number1 - violation_number2    0.866 0.209 242   4.141  0.0002
 violation_number1 - violation_number3    1.066 0.210 242   5.078  <.0001
 violation_number2 - violation_number3    0.200 0.210 242   0.952  0.3418

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 16802, p-value = 0.0006838
alternative hypothesis: two.sided

4.2.2 no give up answers

Warning: Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).
Removed 1 row containing non-finite outside the scale range (`stat_summary()`).


OSA 1 & OSA 4

data_curve_analysis(filter(OSA_explan_core, giveup == FALSE), "explanation_eval")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 2402.9

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.16152 -0.59350  0.06258  0.67453  2.28994 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.3426   0.5853  
 Residual             1.1435   1.0693  
Number of obs: 752, groups:  subject, 282

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         2.78057    0.08479 722.50253  32.795  < 2e-16 ***
violation_number1   0.88420    0.11111 588.31958   7.958 9.05e-15 ***
violation_number2  -0.02338    0.11235 591.84901  -0.208 0.835200    
violation_number3  -0.42594    0.11486 590.12699  -3.709 0.000228 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.637              
viltn_nmbr2 -0.631  0.495       
viltn_nmbr3 -0.613  0.484  0.486

$emmeans
 violation_number emmean     SE  df lower.CL upper.CL
 0                  2.78 0.0848 722     2.57     2.99
 1                  3.66 0.0868 724     3.45     3.88
 2                  2.76 0.0884 726     2.54     2.98
 3                  2.35 0.0919 734     2.12     2.58

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.8842 0.111 588  -7.952  <.0001
 violation_number0 - violation_number2   0.0234 0.112 592   0.208  0.8353
 violation_number0 - violation_number3   0.4259 0.115 590   3.706  0.0007
 violation_number1 - violation_number2   0.9076 0.112 553   8.081  <.0001
 violation_number1 - violation_number3   1.3101 0.115 555  11.401  <.0001
 violation_number2 - violation_number3   0.4026 0.115 536   3.494  0.0010

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 91771, p-value = 2.187e-05
alternative hypothesis: two.sided

OSA 1 only

data_curve_analysis(filter(OSA_explan_core, giveup == FALSE, exp == "OSA1"), "explanation_eval")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 1414.3

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.12056 -0.65101  0.08915  0.64610  2.42294 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.247    0.497   
 Residual             1.032    1.016   
Number of obs: 461, groups:  subject, 200

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         2.84400    0.10172 453.26114  27.960  < 2e-16 ***
violation_number1   0.90770    0.13582 372.18002   6.683 8.56e-11 ***
violation_number2   0.06756    0.13777 375.21803   0.490  0.62417    
violation_number3  -0.43793    0.14253 374.85700  -3.072  0.00228 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.670              
viltn_nmbr2 -0.661  0.512       
viltn_nmbr3 -0.636  0.496  0.498

$emmeans
 violation_number emmean    SE  df lower.CL upper.CL
 0                  2.84 0.102 454     2.59     3.10
 1                  3.75 0.102 453     3.50     4.01
 2                  2.91 0.104 453     2.65     3.17
 3                  2.41 0.111 456     2.13     2.68

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1  -0.9077 0.136 378  -6.672  <.0001
 violation_number0 - violation_number2  -0.0676 0.138 381  -0.490  0.6248
 violation_number0 - violation_number3   0.4379 0.143 381   3.067  0.0046
 violation_number1 - violation_number2   0.8401 0.135 338   6.207  <.0001
 violation_number1 - violation_number3   1.3456 0.140 338   9.609  <.0001
 violation_number2 - violation_number3   0.5055 0.141 321   3.595  0.0011

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 34272, p-value = 0.0005648
alternative hypothesis: two.sided

OSA 4 only

data_curve_analysis(filter(OSA_explan_core, giveup == FALSE, exp == "OSA4"), "explanation_eval")
Warning in jonckheere.test(data[[dv]], as.numeric(data$violation_number)): Sample size > 100 or data with ties 
 p-value based on normal approximation. Specify nperm for permutation p-value
$model_summary
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula_lmer
   Data: data

REML criterion at convergence: 979.2

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.82239 -0.60185  0.03984  0.66667  2.05175 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 0.4634   0.6807  
 Residual             1.3375   1.1565  
Number of obs: 291, groups:  subject, 82

Fixed effects:
                  Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)         2.6575     0.1490 242.7931  17.834  < 2e-16 ***
violation_number1   0.8475     0.1893 211.0831   4.477 1.24e-05 ***
violation_number2  -0.1667     0.1904 212.9626  -0.875   0.3823    
violation_number3  -0.4021     0.1912 213.0728  -2.103   0.0367 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) vltn_1 vltn_2
viltn_nmbr1 -0.585              
viltn_nmbr2 -0.584  0.466       
viltn_nmbr3 -0.581  0.461  0.462

$emmeans
 violation_number emmean    SE  df lower.CL upper.CL
 0                  2.66 0.149 245     2.28     3.03
 1                  3.51 0.158 256     3.11     3.90
 2                  2.49 0.159 257     2.09     2.89
 3                  2.26 0.160 259     1.85     2.66

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: bonferroni method for 4 estimates 

$pairwise_comparisons
 contrast                              estimate    SE  df t.ratio p.value
 violation_number0 - violation_number1   -0.848 0.189 214  -4.476  <.0001
 violation_number0 - violation_number2    0.167 0.190 216   0.875  0.4714
 violation_number0 - violation_number3    0.402 0.191 216   2.102  0.1102
 violation_number1 - violation_number2    1.014 0.196 214   5.167  <.0001
 violation_number1 - violation_number3    1.250 0.198 216   6.320  <.0001
 violation_number2 - violation_number3    0.235 0.198 214   1.189  0.4714

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 6 tests 

$jonckheere_test

    Jonckheere-Terpstra test

data:  
JT = 13901, p-value = 0.01491
alternative hypothesis: two.sided