We will be going through
library(tidyverse)
library(readxl)
library(ggplot2)
library (reshape2)
library(writexl)
library (lmerTest)
library(lme4)
library(dplyr)
library(ggpubr)
library(rstatix)
library(effectsize)
library(multcomp)
library(scales)
TAS_data_long_format_age <- read_excel("C:/ZZ_SherMay/BHP/TAS_data_long_format_age.xlsx") %>% unite("TAS_ID", c("1968 Interview Number", "Person Number")) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
view(TAS_data_long_format_age)
knitr::kable(head(TAS_data_long_format_age))
| TAS | TAS05 | TAS09 | TAS15 | TAS_ID | Gender | Individual is sample | Year ID Number | Sequence Number | Relationship to Head | Release Number | B5A | B5D | B6C | C2D | C2E | C2F | D2D3_month | D2D3_year | E1_1st_mention | E1_2nd_mention | E1_3rd_mention | E3 | G1 | G2_month | G2_year | G10 | G11 | G30A | G41A | G41B | G41C | G41H | G41P | H1 | L7_1st_mention | L7_2nd_mention | L7_3rd_mention | Age_17_graduate | Age_18_graduate | year | year_new |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 | 1 | NA | 4_180 | 2 | 3 | 771 | 2 | 22 | 5 | 3 | 5 | 7 | 3 | 1 | 1 | 2 | 2005 | 1 | 6 | 0 | 0 | 2 | 0 | 0 | 5 | 0 | 7 | 7 | 7 | 7 | 7 | 6 | 3 | 1 | 0 | 0 | 2022 | 2023 | 2005 | -1 |
| 2 | 1 | 1 | NA | 5_32 | 2 | 2 | 624 | 3 | 30 | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 0 | 0 | 1 | 7 | 0 | 0 | 1 | 5 | 2002 | 1 | 1 | 7 | 7 | 6 | 6 | 7 | 5 | 2 | 1 | 0 | 0 | 20 | 21 | 2005 | -1 |
| 2 | 1 | 1 | NA | 6_34 | 1 | 2 | 1202 | 51 | 30 | 5 | 2 | 2 | 6 | 1 | 1 | 1 | 0 | 0 | 7 | 0 | 0 | 5 | 1 | 5 | 2002 | 1 | 1 | 0 | 7 | 5 | 7 | 5 | 3 | 1 | 1 | 0 | 0 | 20 | 21 | 2005 | -1 |
| 2 | 1 | 1 | NA | 14_30 | 1 | 2 | 736 | 51 | 30 | 5 | 4 | 4 | 4 | 2 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 6 | 2003 | 1 | 5 | 6 | 5 | 6 | 6 | 5 | 5 | 2 | 1 | 0 | 0 | 19 | 20 | 2005 | -1 |
| 1 | 1 | NA | NA | 18_38 | 2 | 2 | 5647 | 3 | 98 | 5 | 3 | 4 | 3 | 4 | 2 | 2 | 0 | 0 | 3 | 7 | 0 | 5 | 1 | 6 | 2004 | 1 | 5 | 6 | 5 | 5 | 5 | 7 | 5 | 2 | 1 | 0 | 0 | 18 | 19 | 2005 | -1 |
| 2 | 1 | 1 | NA | 47_34 | 2 | 2 | 2516 | 3 | 30 | 5 | 4 | 5 | 6 | 4 | 5 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2005 | 5 | 0 | 6 | 3 | 6 | 4 | 7 | 4 | 1 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 |
knitr::kable(TAS_data_long_format_age %>% count(year), align = "cc")
| year | n |
|---|---|
| 2005 | 745 |
| 2009 | 1554 |
| 2015 | 1641 |
knitr::kable(TAS_data_long_format_age %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 18 | 465 |
| 19 | 504 |
| 20 | 366 |
| 21 | 287 |
| 22 | 331 |
| 23 | 256 |
| 24 | 208 |
| 25 | 121 |
| 26 | 33 |
| 27 | 16 |
| 28 | 1 |
| 29 | 1 |
| 32 | 1 |
| 2023 | 146 |
| 2027 | 264 |
| 2033 | 940 |
knitr::kable(TAS_data_long_format_age %>% group_by(year) %>% count(Age_18_graduate) %>% ungroup(), align = "ccc")
| year | Age_18_graduate | n |
|---|---|---|
| 2005 | 18 | 179 |
| 2005 | 19 | 169 |
| 2005 | 20 | 164 |
| 2005 | 21 | 83 |
| 2005 | 22 | 2 |
| 2005 | 23 | 2 |
| 2005 | 2023 | 146 |
| 2009 | 18 | 195 |
| 2009 | 19 | 172 |
| 2009 | 20 | 166 |
| 2009 | 21 | 172 |
| 2009 | 22 | 183 |
| 2009 | 23 | 161 |
| 2009 | 24 | 153 |
| 2009 | 25 | 84 |
| 2009 | 26 | 2 |
| 2009 | 27 | 1 |
| 2009 | 28 | 1 |
| 2009 | 2027 | 264 |
| 2015 | 18 | 91 |
| 2015 | 19 | 163 |
| 2015 | 20 | 36 |
| 2015 | 21 | 32 |
| 2015 | 22 | 146 |
| 2015 | 23 | 93 |
| 2015 | 24 | 55 |
| 2015 | 25 | 37 |
| 2015 | 26 | 31 |
| 2015 | 27 | 15 |
| 2015 | 29 | 1 |
| 2015 | 32 | 1 |
| 2015 | 2033 | 940 |
mean_age <- TAS_data_long_format_age %>% group_by(year) %>% filter(Age_18_graduate <50) %>% summarize(mean_age = mean(Age_18_graduate, na.rm = TRUE)) %>% ungroup()
mean_age
## # A tibble: 3 × 2
## year mean_age
## <dbl> <dbl>
## 1 2005 19.3
## 2 2009 21.2
## 3 2015 21.4
sd_age <- TAS_data_long_format_age %>% group_by(year) %>% filter(Age_18_graduate <50) %>% summarize(sd_age = sd(Age_18_graduate, na.rm = TRUE)) %>% ungroup()
sd_age
## # A tibble: 3 × 2
## year sd_age
## <dbl> <dbl>
## 1 2005 1.07
## 2 2009 2.20
## 3 2015 2.54
###Education Status
TAS_data_long_format_age %>% group_by(year) %>% filter(G1 >0) %>% filter(G1<4) %>% count(G1) %>% ungroup()
## # A tibble: 9 × 3
## year G1 n
## <dbl> <dbl> <int>
## 1 2005 1 601
## 2 2005 2 46
## 3 2005 3 96
## 4 2009 1 1292
## 5 2009 2 108
## 6 2009 3 153
## 7 2015 1 799
## 8 2015 2 52
## 9 2015 3 79
TAS_data_long_format_age %>% group_by(year) %>% filter(G10 >0) %>% filter(G10<6) %>% count(G10) %>% ungroup()
## # A tibble: 6 × 3
## year G10 n
## <dbl> <dbl> <int>
## 1 2005 1 487
## 2 2005 5 160
## 3 2009 1 1043
## 4 2009 5 352
## 5 2015 1 531
## 6 2015 5 348
TAS_data_long_format_age %>% group_by(year) %>% filter(G11 >0) %>% filter(G11<6) %>% count(G11) %>% ungroup()
## # A tibble: 6 × 3
## year G11 n
## <dbl> <dbl> <int>
## 1 2005 1 397
## 2 2005 5 90
## 3 2009 1 631
## 4 2009 5 412
## 5 2015 1 482
## 6 2015 5 704
TAS_data_long_format_age %>% group_by(year) %>% count(Gender) %>% ungroup()
## # A tibble: 6 × 3
## year Gender n
## <dbl> <dbl> <int>
## 1 2005 1 348
## 2 2005 2 397
## 3 2009 1 731
## 4 2009 2 823
## 5 2015 1 790
## 6 2015 2 851
TAS_data_long_format_age %>% group_by(year) %>% count(E3) %>% ungroup()
## # A tibble: 11 × 3
## year E3 n
## <dbl> <dbl> <int>
## 1 2005 0 400
## 2 2005 1 86
## 3 2005 5 258
## 4 2005 9 1
## 5 2009 0 928
## 6 2009 1 96
## 7 2009 5 530
## 8 2015 0 1165
## 9 2015 1 51
## 10 2015 5 424
## 11 2015 9 1
TAS_filtered_age <- TAS_data_long_format_age %>% group_by(TAS_ID) %>% mutate(Age_18_graduate = case_when(year == 2005 & Age_18_graduate == 2023 & any(year == 2009) ~ first(Age_18_graduate[year == 2009]) - 4, year == 2009 & Age_18_graduate == 2027 & any(year == 2005) ~ first(Age_18_graduate[year == 2005]) + 4, year == 2009 & Age_18_graduate == 2027 & any(year == 2015) ~ first(Age_18_graduate[year == 2015]) - 6, year == 2015 & Age_18_graduate == 2033 & any(year == 2009) ~ first(Age_18_graduate[year == 2009]) + 6,Age_18_graduate >= 1 & Age_18_graduate <= 50 ~ Age_18_graduate, TRUE ~ Age_18_graduate)) %>% ungroup() %>% filter(Age_18_graduate == 18 | Age_18_graduate == 19) %>% mutate(year_new = factor(year_new, levels = c(-1, 0, 1), labels = c("2005", "2009", "2015")))
view(TAS_filtered_age)
knitr::kable(head(TAS_filtered_age[, 1:42]))
| TAS | TAS05 | TAS09 | TAS15 | TAS_ID | Gender | Individual is sample | Year ID Number | Sequence Number | Relationship to Head | Release Number | B5A | B5D | B6C | C2D | C2E | C2F | D2D3_month | D2D3_year | E1_1st_mention | E1_2nd_mention | E1_3rd_mention | E3 | G1 | G2_month | G2_year | G10 | G11 | G30A | G41A | G41B | G41C | G41H | G41P | H1 | L7_1st_mention | L7_2nd_mention | L7_3rd_mention | Age_17_graduate | Age_18_graduate | year | year_new |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | NA | NA | 18_38 | 2 | 2 | 5647 | 3 | 98 | 5 | 3 | 4 | 3 | 4 | 2 | 2 | 0 | 0 | 3 | 7 | 0 | 5 | 1 | 6 | 2004 | 1 | 5 | 6 | 5 | 5 | 5 | 7 | 5 | 2 | 1 | 0 | 0 | 18 | 19 | 2005 | 2005 |
| 2 | 1 | 1 | NA | 47_34 | 2 | 2 | 2516 | 3 | 30 | 5 | 4 | 5 | 6 | 4 | 5 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2005 | 5 | 0 | 6 | 3 | 6 | 4 | 7 | 4 | 1 | 1 | 0 | 0 | 17 | 18 | 2005 | 2005 |
| 2 | 1 | 1 | NA | 53_36 | 2 | 2 | 1616 | 3 | 30 | 5 | 4 | 5 | 7 | 4 | 1 | 1 | 0 | 0 | 6 | 0 | 0 | 1 | 1 | 6 | 2005 | 1 | 5 | 7 | 7 | 7 | 5 | 7 | 6 | 2 | 1 | 0 | 0 | 17 | 18 | 2005 | 2005 |
| 2 | 1 | 1 | NA | 79_32 | 2 | 2 | 6520 | 2 | 30 | 5 | 3 | 4 | 6 | 7 | 5 | 3 | 0 | 0 | 1 | 7 | 0 | 0 | 1 | 5 | 2004 | 1 | 1 | 0 | 7 | 7 | 6 | 7 | 4 | 1 | 1 | 0 | 0 | 18 | 19 | 2005 | 2005 |
| 2 | 1 | 1 | NA | 88_35 | 1 | 2 | 3411 | 2 | 30 | 5 | 2 | 5 | 7 | 3 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2005 | 1 | 1 | 7 | 2 | 6 | 5 | 6 | 7 | 2 | 1 | 0 | 0 | 17 | 18 | 2005 | 2005 |
| 2 | 1 | 1 | NA | 89_34 | 2 | 2 | 4527 | 3 | 30 | 5 | 2 | 4 | 5 | 2 | 3 | 1 | 0 | 0 | 3 | 7 | 0 | 5 | 1 | 5 | 2005 | 1 | 1 | 7 | 5 | 6 | 4 | 7 | 5 | 1 | 1 | 0 | 0 | 17 | 18 | 2005 | 2005 |
knitr::kable(TAS_filtered_age %>% group_by(year) %>% count(Age_18_graduate), align = "ccc")
| year | Age_18_graduate | n |
|---|---|---|
| 2005 | 18 | 185 |
| 2005 | 19 | 171 |
| 2009 | 18 | 196 |
| 2009 | 19 | 173 |
| 2015 | 18 | 91 |
| 2015 | 19 | 163 |
knitr::kable(TAS_filtered_age %>% count(B5A), align = "cc")
| B5A | n |
|---|---|
| 1 | 48 |
| 2 | 202 |
| 3 | 243 |
| 4 | 318 |
| 5 | 167 |
| 9 | 1 |
B5A_filtered <- TAS_filtered_age %>% filter(B5A < 8) %>% filter(B5A >0)
B5A_Anova <- aov(B5A ~ year_new, data = B5A_filtered)
summary(B5A_Anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## year_new 2 4.7 2.336 1.826 0.162
## Residuals 975 1247.2 1.279
B5A_pairwise <-TukeyHSD(B5A_Anova)
B5A_pairwise
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = B5A ~ year_new, data = B5A_filtered)
##
## $year_new
## diff lwr upr p adj
## 2009-2005 -0.09379580 -0.29115264 0.1035610 0.5046582
## 2015-2005 0.08028842 -0.13776097 0.2983378 0.6629646
## 2015-2009 0.17408422 -0.04247977 0.3906482 0.1430000
B5A_glht <- glht(B5A_Anova, linfct = mcp(year_new = "Tukey"))
summary(B5A_glht)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = B5A ~ year_new, data = B5A_filtered)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2009 - 2005 == 0 -0.09380 0.08408 -1.116 0.504
## 2015 - 2005 == 0 0.08029 0.09289 0.864 0.663
## 2015 - 2009 == 0 0.17408 0.09226 1.887 0.143
## (Adjusted p values reported -- single-step method)
B5A_pairwise_t_test <- pairwise.t.test(B5A_filtered$B5A, B5A_filtered$year_new, p.adjust.method = "BH")
print(B5A_pairwise_t_test)
##
## Pairwise comparisons using t tests with pooled SD
##
## data: B5A_filtered$B5A and B5A_filtered$year_new
##
## 2005 2009
## 2009 0.39 -
## 2015 0.39 0.18
##
## P value adjustment method: BH
B5A_means <- B5A_filtered %>% group_by(year_new) %>% summarise(Mean = mean(B5A),SD = sd(B5A),Count = n())
knitr::kable((B5A_means), align = "cccc")
| year_new | Mean | SD | Count |
|---|---|---|---|
| 2005 | 3.376405 | 1.105125 | 356 |
| 2009 | 3.282609 | 1.151481 | 368 |
| 2015 | 3.456693 | 1.136918 | 254 |
B5A_filtered$predicted_B5A <- predict(B5A_Anova)
B5A_filtered$year_factor_B5A <- factor(B5A_filtered$year)
ggplot(B5A_filtered, aes(x = Age_18_graduate, y = B5A, color = year_factor_B5A)) + geom_point(aes(shape = year_factor_B5A), alpha = 0.5) + geom_line(aes(y = predicted_B5A), size = 1) + labs(title = "Responsibility for Self (B5A) by Age and Year",x = "Age", y = "Responsibility for Self (B5A)", color = "Year", shape = "Year") + theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
ggplot(B5A_filtered, aes(x = year_factor_B5A, y = B5A, fill = year_factor_B5A)) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Box Plot of Responsibility for Self (B5A) in 2005, 2009 and 2015",x = "Year", y = "Responsibility for Self (B5A)", fill = "Year") + theme_minimal()
knitr::kable(TAS_filtered_age %>% count(B6C), align = "cc")
| B6C | n |
|---|---|
| 1 | 9 |
| 2 | 23 |
| 3 | 52 |
| 4 | 122 |
| 5 | 276 |
| 6 | 239 |
| 7 | 258 |
B6C_filtered <- TAS_filtered_age %>% filter(B6C < 8) %>% filter(B6C >0)
B6C_Anova <- aov(B6C ~ year_new, data = B6C_filtered)
summary(B6C_Anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## year_new 2 4.6 2.297 1.271 0.281
## Residuals 976 1763.8 1.807
B6C_pairwise <-TukeyHSD(B6C_Anova)
B6C_pairwise
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = B6C ~ year_new, data = B6C_filtered)
##
## $year_new
## diff lwr upr p adj
## 2009-2005 0.12987577 -0.1045438 0.3642953 0.3952346
## 2015-2005 -0.02430771 -0.2834785 0.2348631 0.9736358
## 2015-2009 -0.15418347 -0.4114462 0.1030793 0.3377514
B6C_glht <- glht(B6C_Anova, linfct = mcp(year_new = "Tukey"))
summary(B6C_glht)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = B6C ~ year_new, data = B6C_filtered)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2009 - 2005 == 0 0.12988 0.09987 1.300 0.395
## 2015 - 2005 == 0 -0.02431 0.11041 -0.220 0.974
## 2015 - 2009 == 0 -0.15418 0.10960 -1.407 0.337
## (Adjusted p values reported -- single-step method)
B6C_pairwise_t_test <- pairwise.t.test(B6C_filtered$B6C, B6C_filtered$year_new, p.adjust.method = "BH")
print(B6C_pairwise_t_test)
##
## Pairwise comparisons using t tests with pooled SD
##
## data: B6C_filtered$B6C and B6C_filtered$year_new
##
## 2005 2009
## 2009 0.29 -
## 2015 0.83 0.29
##
## P value adjustment method: BH
B6C_means <- B6C_filtered %>% group_by(year_new) %>% summarise(Mean = mean(B6C),SD = sd(B6C),Count = n())
knitr::kable((B6C_means), align = "cccc")
| year_new | Mean | SD | Count |
|---|---|---|---|
| 2005 | 5.390449 | 1.434708 | 356 |
| 2009 | 5.520325 | 1.231491 | 369 |
| 2015 | 5.366142 | 1.370134 | 254 |
B6C_filtered$predicted_B6C <- predict(B6C_Anova)
B6C_filtered$year_factor_B6C <- factor(B6C_filtered$year)
ggplot(B6C_filtered, aes(x = Age_18_graduate, y = B6C, color = year_factor_B6C)) + geom_point(aes(shape = year_factor_B6C), alpha = 0.5) + geom_line(aes(y = predicted_B6C), size = 1) + labs(title = "Money management skills (B6C) by Age and Year",x = "Age", y = "Money management skills (B6C)", color = "Year", shape = "Year") + theme_minimal()
ggplot(B6C_filtered, aes(x = year_factor_B6C, y = B6C, fill = year_factor_B6C)) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Box Plot of Money management skills (B6C) in 2005, 2009 and 2015",x = "Year", y = "Money management skills (B6C)", fill = "Year") + theme_minimal()
knitr::kable(TAS_filtered_age %>% count(C2D), align = "cc")
| C2D | n |
|---|---|
| 1 | 165 |
| 2 | 158 |
| 3 | 159 |
| 4 | 171 |
| 5 | 144 |
| 6 | 84 |
| 7 | 98 |
C2D_filtered <- TAS_filtered_age %>% filter(C2D < 8) %>% filter(C2D >0)
C2D_Anova <- aov(C2D ~ year_new, data = C2D_filtered)
summary(C2D_Anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## year_new 2 8 4.105 1.146 0.318
## Residuals 976 3494 3.580
C2D_pairwise <-TukeyHSD(C2D_Anova)
C2D_pairwise
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = C2D ~ year_new, data = C2D_filtered)
##
## $year_new
## diff lwr upr p adj
## 2009-2005 -0.04100058 -0.3709610 0.2889599 0.9541902
## 2015-2005 -0.22586924 -0.5906686 0.1389302 0.3140844
## 2015-2009 -0.18486866 -0.5469824 0.1772451 0.4544183
C2D_glht <- glht(C2D_Anova, linfct = mcp(year_new = "Tukey"))
summary(C2D_glht)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = C2D ~ year_new, data = C2D_filtered)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2009 - 2005 == 0 -0.0410 0.1406 -0.292 0.954
## 2015 - 2005 == 0 -0.2259 0.1554 -1.453 0.314
## 2015 - 2009 == 0 -0.1849 0.1543 -1.198 0.454
## (Adjusted p values reported -- single-step method)
C2D_pairwise_t_test <- pairwise.t.test(C2D_filtered$C2D, C2D_filtered$year_new, p.adjust.method = "BH")
print(C2D_pairwise_t_test)
##
## Pairwise comparisons using t tests with pooled SD
##
## data: C2D_filtered$C2D and C2D_filtered$year_new
##
## 2005 2009
## 2009 0.77 -
## 2015 0.35 0.35
##
## P value adjustment method: BH
C2D_means <- C2D_filtered %>% group_by(year_new) %>% summarise(Mean = mean(C2D),SD = sd(C2D),Count = n())
knitr::kable((C2D_means), align = "cccc")
| year_new | Mean | SD | Count |
|---|---|---|---|
| 2005 | 3.702247 | 1.884285 | 356 |
| 2009 | 3.661247 | 1.925696 | 369 |
| 2015 | 3.476378 | 1.853699 | 254 |
C2D_filtered$predicted_C2D <- predict(C2D_Anova)
C2D_filtered$year_factor_C2D <- factor(C2D_filtered$year)
ggplot(C2D_filtered, aes(x = Age_18_graduate, y = C2D, color = year_factor_C2D)) + geom_point(aes(shape = year_factor_C2D), alpha = 0.5) + geom_line(aes(y = predicted_C2D), size = 1) + labs(title = "Worry about expense (C2D) by Age and Year",x = "Age", y = "Worry about expense (C2D)", color = "Year", shape = "Year") + theme_minimal()
ggplot(C2D_filtered, aes(x = year_factor_C2D, y = C2D, fill = year_factor_C2D)) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Box Plot of Worry about expense (C2D) in 2005, 2009 and 2015",x = "Year", y = "Worry about expense (C2D)", fill = "Year") + theme_minimal()
knitr::kable(TAS_filtered_age %>% count(C2E), align = "cc")
| C2E | n |
|---|---|
| 1 | 174 |
| 2 | 175 |
| 3 | 158 |
| 4 | 139 |
| 5 | 133 |
| 6 | 88 |
| 7 | 112 |
C2E_filtered <- TAS_filtered_age %>% filter(C2E < 8) %>% filter(C2E >0)
C2E_Anova <- aov(C2E ~ year_new, data = C2E_filtered)
summary(C2E_Anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## year_new 2 1 0.433 0.112 0.894
## Residuals 976 3765 3.857
C2E_pairwise <-TukeyHSD(C2E_Anova)
C2E_pairwise
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = C2E ~ year_new, data = C2E_filtered)
##
## $year_new
## diff lwr upr p adj
## 2009-2005 0.061310557 -0.2811726 0.4037937 0.9072802
## 2015-2005 0.062505530 -0.3161388 0.4411499 0.9205857
## 2015-2009 0.001194973 -0.3746618 0.3770518 0.9999693
C2E_glht <- glht(C2E_Anova, linfct = mcp(year_new = "Tukey"))
summary(C2E_glht)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = C2E ~ year_new, data = C2E_filtered)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2009 - 2005 == 0 0.061311 0.145906 0.420 0.907
## 2015 - 2005 == 0 0.062506 0.161311 0.387 0.920
## 2015 - 2009 == 0 0.001195 0.160124 0.007 1.000
## (Adjusted p values reported -- single-step method)
C2E_pairwise_t_test <- pairwise.t.test(C2E_filtered$C2E, C2E_filtered$year_new, p.adjust.method = "BH")
print(C2E_pairwise_t_test)
##
## Pairwise comparisons using t tests with pooled SD
##
## data: C2E_filtered$C2E and C2E_filtered$year_new
##
## 2005 2009
## 2009 0.99 -
## 2015 0.99 0.99
##
## P value adjustment method: BH
C2E_means <- C2E_filtered %>% group_by(year_new) %>% summarise(Mean = mean(C2E),SD = sd(C2E),Count = n())
knitr::kable((C2E_means), align = "cccc")
| year_new | Mean | SD | Count |
|---|---|---|---|
| 2005 | 3.567416 | 1.945296 | 356 |
| 2009 | 3.628726 | 1.974109 | 369 |
| 2015 | 3.629921 | 1.975355 | 254 |
C2E_filtered$predicted_C2E <- predict(C2E_Anova)
C2E_filtered$year_factor_C2E <- factor(C2E_filtered$year)
ggplot(C2E_filtered, aes(x = Age_18_graduate, y = C2E, color = year_factor_C2E)) + geom_point(aes(shape = year_factor_C2E), alpha = 0.5) + geom_line(aes(y = predicted_C2E), size = 1) + labs(title = "Worry about future job (C2E) by Age and Year",x = "Age", y = "Worry about future job (C2E)", color = "Year", shape = "Year") + theme_minimal()
ggplot(C2E_filtered, aes(x = year_factor_C2E, y = C2E, fill = year_factor_C2E)) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Box Plot of Worry about future job (C2E) in 2005, 2009 and 2015",x = "Year", y = "Worry about future job (C2E)", fill = "Year") + theme_minimal()
knitr::kable(TAS_filtered_age %>% count(G41A), align = "cc")
| G41A | n |
|---|---|
| 1 | 38 |
| 2 | 36 |
| 3 | 76 |
| 4 | 116 |
| 5 | 239 |
| 6 | 199 |
| 7 | 274 |
| 9 | 1 |
G41A_filtered <- TAS_filtered_age %>% filter(G41A < 8) %>% filter(G41A >0)
G41A_Anova <- aov(G41A ~ year_new, data = G41A_filtered)
summary(G41A_Anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## year_new 2 42.2 21.091 8.046 0.000342 ***
## Residuals 975 2555.8 2.621
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
G41A_pairwise <-TukeyHSD(G41A_Anova)
G41A_pairwise
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = G41A ~ year_new, data = G41A_filtered)
##
## $year_new
## diff lwr upr p adj
## 2009-2005 -0.03083781 -0.3133562 0.2516806 0.9644608
## 2015-2005 -0.48834380 -0.8004838 -0.1762038 0.0007404
## 2015-2009 -0.45750599 -0.7675196 -0.1474923 0.0016083
G41A_glht <- glht(G41A_Anova, linfct = mcp(year_new = "Tukey"))
summary(G41A_glht)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = G41A ~ year_new, data = G41A_filtered)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2009 - 2005 == 0 -0.03084 0.12036 -0.256 0.964399
## 2015 - 2005 == 0 -0.48834 0.13298 -3.672 0.000746 ***
## 2015 - 2009 == 0 -0.45751 0.13207 -3.464 0.001587 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
G41A_pairwise_t_test <- pairwise.t.test(G41A_filtered$G41A, G41A_filtered$year_new, p.adjust.method = "BH")
print(G41A_pairwise_t_test)
##
## Pairwise comparisons using t tests with pooled SD
##
## data: G41A_filtered$G41A and G41A_filtered$year_new
##
## 2005 2009
## 2009 0.79784 -
## 2015 0.00076 0.00083
##
## P value adjustment method: BH
G41A_means <- G41A_filtered %>% group_by(year_new) %>% summarise(Mean = mean(G41A),SD = sd(G41A),Count = n())
knitr::kable((G41A_means), align = "cccc")
| year_new | Mean | SD | Count |
|---|---|---|---|
| 2005 | 5.362360 | 1.627454 | 356 |
| 2009 | 5.331522 | 1.530395 | 368 |
| 2015 | 4.874016 | 1.728588 | 254 |
G41A_filtered$predicted_G41A <- predict(G41A_Anova)
G41A_filtered$year_factor_G41A <- factor(G41A_filtered$year)
ggplot(G41A_filtered, aes(x = Age_18_graduate, y = G41A, color = year_factor_G41A)) + geom_point(aes(shape = year_factor_G41A), alpha = 0.5) + geom_line(aes(y = predicted_G41A), size = 1) + labs(title = "Importance of job status (G41A) by Age and Year",x = "Age", y = "Importance of job status (G41A)", color = "Year", shape = "Year") + theme_minimal()
ggplot(G41A_filtered, aes(x = year_factor_G41A, y = G41A, fill = year_factor_G41A)) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Box Plot of Importance of job status (G41A) in 2005, 2009 and 2015",x = "Year", y = "Importance of job status (G41A)", fill = "Year") + theme_minimal()
Filter the data (2005 & 2009 & 2015)
Long_format_2005_2009_2015_new <- TAS_data_long_format_age %>% filter(year==2005| year==2015| year == 2009) %>% filter(Age_18_graduate == 18|Age_18_graduate == 19) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1)) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
knitr::kable(head(Long_format_2005_2009_2015_new[, 1:42]))
| TAS | TAS05 | TAS09 | TAS15 | TAS_ID | Gender | Individual is sample | Year ID Number | Sequence Number | Relationship to Head | Release Number | B5A | B5D | B6C | C2D | C2E | C2F | D2D3_month | D2D3_year | E1_1st_mention | E1_2nd_mention | E1_3rd_mention | E3 | G1 | G2_month | G2_year | G10 | G11 | G30A | G41A | G41B | G41C | G41H | G41P | H1 | L7_1st_mention | L7_2nd_mention | L7_3rd_mention | Age_17_graduate | Age_18_graduate | year | year_new |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | NA | NA | 18_38 | 2 | 2 | 5647 | 3 | 98 | 5 | 3 | 4 | 3 | 4 | 2 | 2 | 0 | 0 | 3 | 7 | 0 | 5 | 1 | 6 | 2004 | 1 | 5 | 6 | 5 | 5 | 5 | 7 | 5 | 2 | 1 | 0 | 0 | 18 | 19 | 2005 | -1 |
| 2 | 1 | 1 | NA | 47_34 | 2 | 2 | 2516 | 3 | 30 | 5 | 4 | 5 | 6 | 4 | 5 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2005 | 5 | 0 | 6 | 3 | 6 | 4 | 7 | 4 | 1 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 |
| 2 | 1 | 1 | NA | 53_36 | 2 | 2 | 1616 | 3 | 30 | 5 | 4 | 5 | 7 | 4 | 1 | 1 | 0 | 0 | 6 | 0 | 0 | 1 | 1 | 6 | 2005 | 1 | 5 | 7 | 7 | 7 | 5 | 7 | 6 | 2 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 |
| 2 | 1 | 1 | NA | 79_32 | 2 | 2 | 6520 | 2 | 30 | 5 | 3 | 4 | 6 | 7 | 5 | 3 | 0 | 0 | 1 | 7 | 0 | 0 | 1 | 5 | 2004 | 1 | 1 | 0 | 7 | 7 | 6 | 7 | 4 | 1 | 1 | 0 | 0 | 18 | 19 | 2005 | -1 |
| 2 | 1 | 1 | NA | 88_35 | 1 | 2 | 3411 | 2 | 30 | 5 | 2 | 5 | 7 | 3 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2005 | 1 | 1 | 7 | 2 | 6 | 5 | 6 | 7 | 2 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 |
| 2 | 1 | 1 | NA | 89_34 | 2 | 2 | 4527 | 3 | 30 | 5 | 2 | 4 | 5 | 2 | 3 | 1 | 0 | 0 | 3 | 7 | 0 | 5 | 1 | 5 | 2005 | 1 | 1 | 7 | 5 | 6 | 4 | 7 | 5 | 1 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 |
knitr::kable(Long_format_2005_2009_2015_new %>% count(year), align = "cc")
| year | n |
|---|---|
| 2005 | 348 |
| 2009 | 367 |
| 2015 | 254 |
Year
knitr::kable(count(Long_format_2005_2009_2015_new, year), align = "cc")
| year | n |
|---|---|
| 2005 | 348 |
| 2009 | 367 |
| 2015 | 254 |
Age
knitr::kable(count(Long_format_2005_2009_2015_new, Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 18 | 465 |
| 19 | 504 |
Age by year (2005)
knitr::kable(Long_format_2005_2009_2015_new %>% filter(year == 2005) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 18 | 179 |
| 19 | 169 |
Age by year (2009)
knitr::kable(Long_format_2005_2009_2015_new %>% filter(year == 2009) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 18 | 195 |
| 19 | 172 |
Age by year (2015)
knitr::kable(Long_format_2005_2009_2015_new %>% filter(year == 2015) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 18 | 91 |
| 19 | 163 |
Gender [1 = Male; 2 = Female]
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(Gender), align = "ccc")
| year | Gender | n |
|---|---|---|
| 2005 | 1 | 169 |
| 2005 | 2 | 179 |
| 2009 | 1 | 165 |
| 2009 | 2 | 202 |
| 2015 | 1 | 119 |
| 2015 | 2 | 135 |
Years graduated high school (by year)
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(G2_year), align = "ccc")
| year | G2_year | n |
|---|---|---|
| 2005 | 2004 | 169 |
| 2005 | 2005 | 179 |
| 2009 | 2008 | 172 |
| 2009 | 2009 | 195 |
| 2015 | 2014 | 163 |
| 2015 | 2015 | 91 |
mean_year_graduation <- Long_format_2005_2009_2015_new %>% group_by(year) %>% summarize(mean_graduation = mean(G2_year, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_year_graduation), align = "cc")
| year | mean_graduation |
|---|---|
| 2005 | 2004.514 |
| 2009 | 2008.531 |
| 2015 | 2014.358 |
sd_year_graduation <- Long_format_2005_2009_2015_new %>% group_by(year) %>% summarize(sd_graduation = sd(G2_year, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_year_graduation), align = "cc")
| year | sd_graduation |
|---|---|
| 2005 | 0.5005132 |
| 2009 | 0.4996984 |
| 2015 | 0.4804380 |
Race – 1st mention [1 = White; 2 = Black, African-American, or Negro; 3 = American Indian or Alaska Native; 4 = Asian; 5 = Native Hawaiian or Pacific Islander; 7 = Some other race; 8 = DK;9 = NA]
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(L7_1st_mention), align = "ccc")
| year | L7_1st_mention | n |
|---|---|---|
| 2005 | 1 | 192 |
| 2005 | 2 | 129 |
| 2005 | 3 | 1 |
| 2005 | 4 | 5 |
| 2005 | 5 | 3 |
| 2005 | 7 | 4 |
| 2005 | 8 | 1 |
| 2005 | 9 | 13 |
| 2009 | 1 | 184 |
| 2009 | 2 | 139 |
| 2009 | 3 | 6 |
| 2009 | 4 | 10 |
| 2009 | 5 | 1 |
| 2009 | 7 | 25 |
| 2009 | 8 | 1 |
| 2009 | 9 | 1 |
| 2015 | 1 | 139 |
| 2015 | 2 | 99 |
| 2015 | 3 | 1 |
| 2015 | 4 | 3 |
| 2015 | 5 | 2 |
| 2015 | 7 | 9 |
| 2015 | 9 | 1 |
Race – 2nd mention
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(L7_2nd_mention), align = "ccc")
| year | L7_2nd_mention | n |
|---|---|---|
| 2005 | 0 | 341 |
| 2005 | 2 | 2 |
| 2005 | 3 | 2 |
| 2005 | 5 | 2 |
| 2005 | 7 | 1 |
| 2009 | 0 | 347 |
| 2009 | 1 | 8 |
| 2009 | 2 | 1 |
| 2009 | 3 | 6 |
| 2009 | 5 | 2 |
| 2009 | 7 | 3 |
| 2015 | 0 | 228 |
| 2015 | 1 | 4 |
| 2015 | 2 | 3 |
| 2015 | 3 | 15 |
| 2015 | 4 | 1 |
| 2015 | 5 | 1 |
| 2015 | 7 | 2 |
Race – 3rd mention
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(L7_3rd_mention), align = "ccc")
| year | L7_3rd_mention | n |
|---|---|---|
| 2005 | 0 | 348 |
| 2009 | 0 | 364 |
| 2009 | 3 | 3 |
| 2015 | 0 | 251 |
| 2015 | 1 | 2 |
| 2015 | 7 | 1 |
Widowed – year
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(D2D3_year), align = "ccc")
| year | D2D3_year | n |
|---|---|---|
| 2005 | 0 | 348 |
| 2009 | 0 | 367 |
| 2015 | 0 | 254 |
Employment status – 1st mention [1 = Working now, including military; 2 = Only temporarily laid off; sick or maternity leave; 3 = Looking for work, unemployed; 4 = Retired; 5 = Disabled, permanently or temporarily; 6 = Keeping house; 7 = Student; 8 = Other]
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(E1_1st_mention), align = "ccc")
| year | E1_1st_mention | n |
|---|---|---|
| 2005 | 1 | 163 |
| 2005 | 2 | 1 |
| 2005 | 3 | 38 |
| 2005 | 6 | 6 |
| 2005 | 7 | 136 |
| 2005 | 8 | 4 |
| 2009 | 1 | 149 |
| 2009 | 3 | 73 |
| 2009 | 6 | 5 |
| 2009 | 7 | 139 |
| 2009 | 99 | 1 |
| 2015 | 1 | 133 |
| 2015 | 2 | 1 |
| 2015 | 3 | 46 |
| 2015 | 6 | 7 |
| 2015 | 7 | 67 |
Employment status – 2nd mention
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(E1_2nd_mention), align = "ccc")
| year | E1_2nd_mention | n |
|---|---|---|
| 2005 | 0 | 261 |
| 2005 | 1 | 13 |
| 2005 | 3 | 5 |
| 2005 | 6 | 3 |
| 2005 | 7 | 66 |
| 2009 | 0 | 214 |
| 2009 | 1 | 19 |
| 2009 | 3 | 23 |
| 2009 | 6 | 4 |
| 2009 | 7 | 107 |
| 2015 | 0 | 158 |
| 2015 | 1 | 14 |
| 2015 | 3 | 10 |
| 2015 | 6 | 2 |
| 2015 | 7 | 70 |
Employment status – 3rd mention
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(E1_3rd_mention), align = "ccc")
| year | E1_3rd_mention | n |
|---|---|---|
| 2005 | 0 | 345 |
| 2005 | 1 | 1 |
| 2005 | 3 | 1 |
| 2005 | 7 | 1 |
| 2009 | 0 | 367 |
| 2015 | 0 | 254 |
Work for money [1 = Yes; 5 = No; 8 = DK; 9 = NA]
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(E3), align = "ccc")
| year | E3 | n |
|---|---|---|
| 2005 | 0 | 177 |
| 2005 | 1 | 45 |
| 2005 | 5 | 125 |
| 2005 | 9 | 1 |
| 2009 | 0 | 168 |
| 2009 | 1 | 18 |
| 2009 | 5 | 181 |
| 2015 | 0 | 149 |
| 2015 | 1 | 6 |
| 2015 | 5 | 99 |
Education status [1 = Graduated from high school; 2 = Got a GED; 3 = Neither]
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(G1), align = "ccc")
| year | G1 | n |
|---|---|---|
| 2005 | 1 | 348 |
| 2009 | 1 | 367 |
| 2015 | 1 | 254 |
Attended College [1 = Yes; 5 = No]
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(G10), align = "ccc")
| year | G10 | n |
|---|---|---|
| 2005 | 1 | 255 |
| 2005 | 5 | 92 |
| 2005 | 9 | 1 |
| 2009 | 1 | 265 |
| 2009 | 5 | 102 |
| 2015 | 0 | 1 |
| 2015 | 1 | 173 |
| 2015 | 5 | 80 |
Attending College [1 = Yes; 5 = No]
knitr::kable(Long_format_2005_2009_2015_new %>% group_by(year) %>% count(G11), align = "ccc")
| year | G11 | n |
|---|---|---|
| 2005 | 0 | 93 |
| 2005 | 1 | 221 |
| 2005 | 5 | 34 |
| 2009 | 0 | 102 |
| 2009 | 1 | 242 |
| 2009 | 5 | 23 |
| 2015 | 0 | 80 |
| 2015 | 1 | 139 |
| 2015 | 5 | 35 |
Filter the data (2005 & 2009)
Long_format_2005_2009 <- TAS_data_long_format_age %>% filter(year < 2010) %>% filter (TAS05 == 1) %>% filter (TAS09 == 1) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1)) %>% group_by(TAS_ID) %>% mutate(Age_18_graduate = case_when(Age_18_graduate == 2027 ~ Age_18_graduate[year == 2005] + 4, Age_18_graduate == 2023 ~ Age_18_graduate[year == 2009] - 4, TRUE ~ Age_18_graduate)) %>% ungroup() %>% filter (Age_18_graduate <100) %>% group_by(TAS_ID) %>% mutate(age_difference = Age_18_graduate[year == 2009] - Age_18_graduate[year == 2005]) %>% filter(age_difference < 6) %>% filter(age_difference > 2) %>% ungroup()
view(Long_format_2005_2009)
knitr::kable(head(Long_format_2005_2009[, 1:43]))
| TAS | TAS05 | TAS09 | TAS15 | TAS_ID | Gender | Individual is sample | Year ID Number | Sequence Number | Relationship to Head | Release Number | B5A | B5D | B6C | C2D | C2E | C2F | D2D3_month | D2D3_year | E1_1st_mention | E1_2nd_mention | E1_3rd_mention | E3 | G1 | G2_month | G2_year | G10 | G11 | G30A | G41A | G41B | G41C | G41H | G41P | H1 | L7_1st_mention | L7_2nd_mention | L7_3rd_mention | Age_17_graduate | Age_18_graduate | year | year_new | age_difference |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 | 1 | NA | 5_32 | 2 | 2 | 624 | 3 | 30 | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 0 | 0 | 1 | 7 | 0 | 0 | 1 | 5 | 2002 | 1 | 1 | 7 | 7 | 6 | 6 | 7 | 5 | 2 | 1 | 0 | 0 | 20 | 21 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 6_34 | 1 | 2 | 1202 | 51 | 30 | 5 | 2 | 2 | 6 | 1 | 1 | 1 | 0 | 0 | 7 | 0 | 0 | 5 | 1 | 5 | 2002 | 1 | 1 | 0 | 7 | 5 | 7 | 5 | 3 | 1 | 1 | 0 | 0 | 20 | 21 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 14_30 | 1 | 2 | 736 | 51 | 30 | 5 | 4 | 4 | 4 | 2 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 6 | 2003 | 1 | 5 | 6 | 5 | 6 | 6 | 5 | 5 | 2 | 1 | 0 | 0 | 19 | 20 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 47_34 | 2 | 2 | 2516 | 3 | 30 | 5 | 4 | 5 | 6 | 4 | 5 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2005 | 5 | 0 | 6 | 3 | 6 | 4 | 7 | 4 | 1 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 53_35 | 2 | 2 | 1392 | 3 | 33 | 5 | 4 | 5 | 5 | 3 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 6 | 2002 | 1 | 1 | 7 | 6 | 7 | 7 | 7 | 5 | 1 | 1 | 0 | 0 | 20 | 21 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 53_36 | 2 | 2 | 1616 | 3 | 30 | 5 | 4 | 5 | 7 | 4 | 1 | 1 | 0 | 0 | 6 | 0 | 0 | 1 | 1 | 6 | 2005 | 1 | 5 | 7 | 7 | 7 | 5 | 7 | 6 | 2 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 | 4 |
knitr::kable(count(Long_format_2005_2009, year), align = "cc")
| year | n |
|---|---|
| 2005 | 542 |
| 2009 | 542 |
knitr::kable(count(Long_format_2005_2009, Age_18_graduate), align = "ccc")
| Age_18_graduate | n |
|---|---|
| 14 | 1 |
| 17 | 7 |
| 18 | 166 |
| 19 | 150 |
| 20 | 141 |
| 21 | 83 |
| 22 | 167 |
| 23 | 150 |
| 24 | 140 |
| 25 | 76 |
| 26 | 2 |
| 27 | 1 |
Age count - 2005
knitr::kable(Long_format_2005_2009 %>% filter(year == 2005) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 14 | 1 |
| 17 | 7 |
| 18 | 165 |
| 19 | 150 |
| 20 | 141 |
| 21 | 76 |
| 22 | 1 |
| 23 | 1 |
Age count - 2009
knitr::kable(Long_format_2005_2009 %>% filter(year == 2009) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 18 | 1 |
| 21 | 7 |
| 22 | 166 |
| 23 | 149 |
| 24 | 140 |
| 25 | 76 |
| 26 | 2 |
| 27 | 1 |
data_2005 <- Long_format_2005_2009 %>% filter(year_new == -1)
data_2009 <- Long_format_2005_2009 %>% filter(year_new == 0)
B5A_t_test_05_09 <- t.test(data_2005$B5A, data_2009$B5A, paired = TRUE)
B5A_t_test_05_09
##
## Paired t-test
##
## data: data_2005$B5A and data_2009$B5A
## t = -14.895, df = 541, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.9376670 -0.7191595
## sample estimates:
## mean difference
## -0.8284133
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(B5A), align = "ccc")
| year | B5A | n |
|---|---|---|
| 2005 | 1 | 25 |
| 2005 | 2 | 105 |
| 2005 | 3 | 119 |
| 2005 | 4 | 167 |
| 2005 | 5 | 126 |
| 2009 | 1 | 11 |
| 2009 | 2 | 29 |
| 2009 | 3 | 47 |
| 2009 | 4 | 146 |
| 2009 | 5 | 309 |
mean_B5A_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(average_B5A = mean(B5A, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_B5A_0509), align = "cc")
| year | average_B5A |
|---|---|
| 2005 | 3.487085 |
| 2009 | 4.315498 |
sd_B5A_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(sd_B5A = sd(B5A, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_B5A_0509), align = "cc")
| year | sd_B5A |
|---|---|
| 2005 | 1.1753865 |
| 2009 | 0.9776143 |
Long_format_2005_2009 %>% ggplot(aes(x = factor(year), y = B5A, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Responsibility for Self (B5A) in 2005 and 2009", x = "Year", y = "Responsibility for Self (B5A)") + scale_fill_manual(values = c("2005" = "skyblue", "2009" = "salmon")) + theme_minimal()
effect_size_B5A_05_09 <- cohens_d(data_2005$B5A, data_2009$B5A, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_B5A_05_09
## Cohen's d | 95% CI
## --------------------------
## -0.64 | [-0.73, -0.55]
B6C_t_test_05_09 <- t.test(data_2005$B6C, data_2009$B6C, paired = TRUE)
B6C_t_test_05_09
##
## Paired t-test
##
## data: data_2005$B6C and data_2009$B6C
## t = -1.4667, df = 541, p-value = 0.143
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.20285228 0.02942055
## sample estimates:
## mean difference
## -0.08671587
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(B6C), align = "ccc")
| year | B6C | n |
|---|---|---|
| 2005 | 1 | 9 |
| 2005 | 2 | 21 |
| 2005 | 3 | 30 |
| 2005 | 4 | 71 |
| 2005 | 5 | 163 |
| 2005 | 6 | 115 |
| 2005 | 7 | 133 |
| 2009 | 1 | 4 |
| 2009 | 2 | 10 |
| 2009 | 3 | 22 |
| 2009 | 4 | 88 |
| 2009 | 5 | 163 |
| 2009 | 6 | 134 |
| 2009 | 7 | 121 |
mean_B6C_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(average_B6C = mean(B6C, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_B6C_0509), align = "cc")
| year | average_B6C |
|---|---|
| 2005 | 5.278598 |
| 2009 | 5.365314 |
sd_B6C_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(sd_B6C = sd(B6C, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_B6C_0509), align = "cc")
| year | sd_B6C |
|---|---|
| 2005 | 1.444559 |
| 2009 | 1.272246 |
Long_format_2005_2009 %>% ggplot(aes(x = factor(year), y = B6C, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Money management skills (B6C) in 2005 and 2009", x = "Year", y = "Money management skills (B6C)") + scale_fill_manual(values = c("2005" = "skyblue", "2009" = "salmon")) + theme_minimal()
effect_size_B6C_05_09 <- cohens_d(data_2005$B6C, data_2009$B6C, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_B6C_05_09
## Cohen's d | 95% CI
## -------------------------
## -0.06 | [-0.15, 0.02]
C2D_t_test_05_09 <- t.test(data_2005$C2D, data_2009$C2D, paired = TRUE)
C2D_t_test_05_09
##
## Paired t-test
##
## data: data_2005$C2D and data_2009$C2D
## t = -3.0212, df = 541, p-value = 0.002636
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.46582598 -0.09874967
## sample estimates:
## mean difference
## -0.2822878
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(C2D), align = "ccc")
| year | C2D | n |
|---|---|---|
| 2005 | 1 | 82 |
| 2005 | 2 | 87 |
| 2005 | 3 | 96 |
| 2005 | 4 | 98 |
| 2005 | 5 | 81 |
| 2005 | 6 | 48 |
| 2005 | 7 | 50 |
| 2009 | 1 | 60 |
| 2009 | 2 | 85 |
| 2009 | 3 | 90 |
| 2009 | 4 | 97 |
| 2009 | 5 | 82 |
| 2009 | 6 | 62 |
| 2009 | 7 | 66 |
mean_C2D_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(average_C2D = mean(C2D, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_C2D_0509), align = "cc")
| year | average_C2D |
|---|---|
| 2005 | 3.651292 |
| 2009 | 3.933579 |
sd_C2D_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(sd_C2D = sd(C2D, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_C2D_0509), align = "cc")
| year | sd_C2D |
|---|---|
| 2005 | 1.843756 |
| 2009 | 1.869894 |
ggplot(Long_format_2005_2009, aes(x = factor(year), y = C2D, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Worry about expenses (C2D) in 2005 and 2009", x = "Year", y = "Worry about expenses (C2D)") + scale_fill_manual(values = c("2005" = "skyblue", "2009" = "salmon")) + theme_minimal()
effect_size_C2D_05_09 <- cohens_d(data_2005$C2D, data_2009$C2D, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_C2D_05_09
## Cohen's d | 95% CI
## --------------------------
## -0.13 | [-0.21, -0.05]
C2E_t_test_05_09 <- t.test(data_2005$C2E, data_2009$C2E, paired = TRUE)
C2E_t_test_05_09
##
## Paired t-test
##
## data: data_2005$C2E and data_2009$C2E
## t = -2.5726, df = 541, p-value = 0.01036
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.42299611 -0.05670869
## sample estimates:
## mean difference
## -0.2398524
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(C2E), align = "ccc")
| year | C2E | n |
|---|---|---|
| 2005 | 1 | 103 |
| 2005 | 2 | 101 |
| 2005 | 3 | 89 |
| 2005 | 4 | 65 |
| 2005 | 5 | 86 |
| 2005 | 6 | 59 |
| 2005 | 7 | 39 |
| 2009 | 1 | 75 |
| 2009 | 2 | 100 |
| 2009 | 3 | 90 |
| 2009 | 4 | 90 |
| 2009 | 5 | 64 |
| 2009 | 6 | 67 |
| 2009 | 7 | 56 |
mean_C2E_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(average_C2E = mean(C2E, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_C2E_0509), align = "cc")
| year | average_C2E |
|---|---|
| 2005 | 3.485240 |
| 2009 | 3.725092 |
sd_C2E_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(sd_C2E = sd(C2E, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_C2E_0509), align = "cc")
| year | sd_C2E |
|---|---|
| 2005 | 1.898234 |
| 2009 | 1.903416 |
ggplot(Long_format_2005_2009, aes(x = factor(year), y = C2E, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Worry about future job (C2E) in 2005 and 2009", x = "Year", y = "Worry about future job (C2E)") + scale_fill_manual(values = c("2005" = "skyblue", "2009" = "salmon")) + theme_minimal()
effect_size_C2E_05_09 <- cohens_d(data_2005$C2E, data_2009$C2E, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_C2E_05_09
## Cohen's d | 95% CI
## --------------------------
## -0.11 | [-0.19, -0.03]
G41A_t_test_05_09 <- t.test(data_2005$G41A, data_2009$G41A, paired = TRUE)
G41A_t_test_05_09
##
## Paired t-test
##
## data: data_2005$G41A and data_2009$G41A
## t = 8.1936, df = 541, p-value = 1.841e-15
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.4614852 0.7525369
## sample estimates:
## mean difference
## 0.6070111
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(G41A), align = "ccc")
| year | G41A | n |
|---|---|---|
| 2005 | 1 | 22 |
| 2005 | 2 | 24 |
| 2005 | 3 | 37 |
| 2005 | 4 | 61 |
| 2005 | 5 | 127 |
| 2005 | 6 | 117 |
| 2005 | 7 | 154 |
| 2009 | 1 | 48 |
| 2009 | 2 | 42 |
| 2009 | 3 | 42 |
| 2009 | 4 | 84 |
| 2009 | 5 | 140 |
| 2009 | 6 | 85 |
| 2009 | 7 | 101 |
mean_G41A_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(average_G41A = mean(G41A, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_G41A_0509), align = "cc")
| year | average_G41A |
|---|---|
| 2005 | 5.239852 |
| 2009 | 4.632841 |
sd_G41A_0509 <- Long_format_2005_2009 %>% group_by(year) %>% summarize(sd_G41A = sd(G41A, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_G41A_0509), align = "cc")
| year | sd_G41A |
|---|---|
| 2005 | 1.653328 |
| 2009 | 1.831101 |
ggplot(Long_format_2005_2009, aes(x = factor(year), y = G41A, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Importance of job status (G41A) in 2005 and 2009", x = "Year", y = "Importance of job status (G41A)") + scale_fill_manual(values = c("2005" = "skyblue", "2009" = "salmon")) + theme_minimal()
effect_size_G41A_05_09 <- cohens_d(data_2005$G41A, data_2009$G41A, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_G41A_05_09
## Cohen's d | 95% CI
## ------------------------
## 0.35 | [0.27, 0.44]
Filter the data (2005 & 2009)
Long_format_2005_2009 <- TAS_data_long_format_age %>% filter(year < 2010) %>% filter (TAS05 == 1) %>% filter (TAS09 == 1) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1)) %>% group_by(TAS_ID) %>% mutate(Age_18_graduate = case_when(Age_18_graduate == 2027 ~ Age_18_graduate[year == 2005] + 4, Age_18_graduate == 2023 ~ Age_18_graduate[year == 2009] - 4, TRUE ~ Age_18_graduate)) %>% ungroup() %>% filter (Age_18_graduate <100) %>% group_by(TAS_ID) %>% mutate(age_difference = Age_18_graduate[year == 2009] - Age_18_graduate[year == 2005]) %>% filter(age_difference < 6) %>% filter(age_difference > 2) %>% ungroup()
view(Long_format_2005_2009)
knitr::kable(head(Long_format_2005_2009[, 1:43]))
| TAS | TAS05 | TAS09 | TAS15 | TAS_ID | Gender | Individual is sample | Year ID Number | Sequence Number | Relationship to Head | Release Number | B5A | B5D | B6C | C2D | C2E | C2F | D2D3_month | D2D3_year | E1_1st_mention | E1_2nd_mention | E1_3rd_mention | E3 | G1 | G2_month | G2_year | G10 | G11 | G30A | G41A | G41B | G41C | G41H | G41P | H1 | L7_1st_mention | L7_2nd_mention | L7_3rd_mention | Age_17_graduate | Age_18_graduate | year | year_new | age_difference |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 | 1 | NA | 5_32 | 2 | 2 | 624 | 3 | 30 | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 0 | 0 | 1 | 7 | 0 | 0 | 1 | 5 | 2002 | 1 | 1 | 7 | 7 | 6 | 6 | 7 | 5 | 2 | 1 | 0 | 0 | 20 | 21 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 6_34 | 1 | 2 | 1202 | 51 | 30 | 5 | 2 | 2 | 6 | 1 | 1 | 1 | 0 | 0 | 7 | 0 | 0 | 5 | 1 | 5 | 2002 | 1 | 1 | 0 | 7 | 5 | 7 | 5 | 3 | 1 | 1 | 0 | 0 | 20 | 21 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 14_30 | 1 | 2 | 736 | 51 | 30 | 5 | 4 | 4 | 4 | 2 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 6 | 2003 | 1 | 5 | 6 | 5 | 6 | 6 | 5 | 5 | 2 | 1 | 0 | 0 | 19 | 20 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 47_34 | 2 | 2 | 2516 | 3 | 30 | 5 | 4 | 5 | 6 | 4 | 5 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2005 | 5 | 0 | 6 | 3 | 6 | 4 | 7 | 4 | 1 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 53_35 | 2 | 2 | 1392 | 3 | 33 | 5 | 4 | 5 | 5 | 3 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 6 | 2002 | 1 | 1 | 7 | 6 | 7 | 7 | 7 | 5 | 1 | 1 | 0 | 0 | 20 | 21 | 2005 | -1 | 4 |
| 2 | 1 | 1 | NA | 53_36 | 2 | 2 | 1616 | 3 | 30 | 5 | 4 | 5 | 7 | 4 | 1 | 1 | 0 | 0 | 6 | 0 | 0 | 1 | 1 | 6 | 2005 | 1 | 5 | 7 | 7 | 7 | 5 | 7 | 6 | 2 | 1 | 0 | 0 | 17 | 18 | 2005 | -1 | 4 |
Year
knitr::kable(count(Long_format_2005_2009, year), align = "cc")
| year | n |
|---|---|
| 2005 | 542 |
| 2009 | 542 |
Age
knitr::kable(count(Long_format_2005_2009, Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 14 | 1 |
| 17 | 7 |
| 18 | 166 |
| 19 | 150 |
| 20 | 141 |
| 21 | 83 |
| 22 | 167 |
| 23 | 150 |
| 24 | 140 |
| 25 | 76 |
| 26 | 2 |
| 27 | 1 |
Age by year(2005)
knitr::kable(Long_format_2005_2009 %>% filter(year == 2005) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 14 | 1 |
| 17 | 7 |
| 18 | 165 |
| 19 | 150 |
| 20 | 141 |
| 21 | 76 |
| 22 | 1 |
| 23 | 1 |
Age by year (2009)
knitr::kable(Long_format_2005_2009 %>% filter(year == 2009) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 18 | 1 |
| 21 | 7 |
| 22 | 166 |
| 23 | 149 |
| 24 | 140 |
| 25 | 76 |
| 26 | 2 |
| 27 | 1 |
Gender [1 = Male; 2 = Female]
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(Gender), align = "ccc")
| year | Gender | n |
|---|---|---|
| 2005 | 1 | 245 |
| 2005 | 2 | 297 |
| 2009 | 1 | 245 |
| 2009 | 2 | 297 |
Years graduated high school
knitr::kable(Long_format_2005_2009 %>% filter(G2_year != 0) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% count(G2_year) %>% ungroup(), align = "ccc")
| year | G2_year | n |
|---|---|---|
| 2005 | 2001 | 1 |
| 2005 | 2002 | 76 |
| 2005 | 2003 | 139 |
| 2005 | 2004 | 145 |
| 2005 | 2005 | 157 |
| 2009 | 2001 | 2 |
| 2009 | 2002 | 76 |
| 2009 | 2003 | 138 |
| 2009 | 2004 | 144 |
| 2009 | 2005 | 158 |
knitr::kable(Long_format_2005_2009 %>% filter(G2_year != 0) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% count(year), align = "cc")
| year | n |
|---|---|
| 2005 | 518 |
| 2009 | 518 |
mean_year_graduation <- Long_format_2005_2009 %>% filter(G2_year != 0) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% summarize(mean_graduation = mean(G2_year, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_year_graduation), align = "cc")
| year | mean_graduation |
|---|---|
| 2005 | 2003.736 |
| 2009 | 2003.734 |
sd_year_graduation <- Long_format_2005_2009 %>% filter(G2_year != 0) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% summarize(sd_graduation = sd(G2_year, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_year_graduation), align = "cc")
| year | sd_graduation |
|---|---|
| 2005 | 1.052552 |
| 2009 | 1.060305 |
Race – 1st mention [1 = White; 2 = Black, African-American, or Negro; 3 = American Indian or Alaska Native; 4 = Asian; 5 = Native Hawaiian or Pacific Islander; 7 = Some other race; 8 = DK; 9 = NA]
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(L7_1st_mention), align = "ccc")
| year | L7_1st_mention | n |
|---|---|---|
| 2005 | 1 | 293 |
| 2005 | 2 | 208 |
| 2005 | 3 | 3 |
| 2005 | 4 | 6 |
| 2005 | 5 | 3 |
| 2005 | 7 | 6 |
| 2005 | 8 | 2 |
| 2005 | 9 | 21 |
| 2009 | 1 | 306 |
| 2009 | 2 | 206 |
| 2009 | 3 | 5 |
| 2009 | 4 | 7 |
| 2009 | 7 | 17 |
| 2009 | 9 | 1 |
Race – 2nd mention
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(L7_2nd_mention), align = "ccc")
| year | L7_2nd_mention | n |
|---|---|---|
| 2005 | 0 | 529 |
| 2005 | 1 | 1 |
| 2005 | 2 | 4 |
| 2005 | 3 | 4 |
| 2005 | 5 | 2 |
| 2005 | 7 | 2 |
| 2009 | 0 | 514 |
| 2009 | 1 | 1 |
| 2009 | 2 | 6 |
| 2009 | 3 | 17 |
| 2009 | 4 | 1 |
| 2009 | 7 | 3 |
Race – 3rd mention
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(L7_3rd_mention), align = "ccc")
| year | L7_3rd_mention | n |
|---|---|---|
| 2005 | 0 | 540 |
| 2005 | 3 | 1 |
| 2005 | 5 | 1 |
| 2009 | 0 | 536 |
| 2009 | 3 | 3 |
| 2009 | 5 | 1 |
| 2009 | 7 | 2 |
Widowed – year
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(D2D3_year), align = "ccc")
| year | D2D3_year | n |
|---|---|---|
| 2005 | 0 | 542 |
| 2009 | 0 | 538 |
| 2009 | 2006 | 2 |
| 2009 | 2007 | 1 |
| 2009 | 2009 | 1 |
Employment status – 1st mention [1 = Working now, including military; 2 = Only temporarily laid off; sick or maternity leave; 3 = Looking for work, unemployed; 4 = Retired; 5 = Disabled, permanently or temporarily; 6 = Keeping house; 7 = Student; 8 = Other]
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(E1_1st_mention), align = "ccc")
| year | E1_1st_mention | n |
|---|---|---|
| 2005 | 1 | 260 |
| 2005 | 2 | 3 |
| 2005 | 3 | 50 |
| 2005 | 5 | 1 |
| 2005 | 6 | 10 |
| 2005 | 7 | 213 |
| 2005 | 8 | 5 |
| 2009 | 1 | 376 |
| 2009 | 2 | 1 |
| 2009 | 3 | 77 |
| 2009 | 5 | 2 |
| 2009 | 6 | 20 |
| 2009 | 7 | 65 |
| 2009 | 8 | 1 |
Employment status – 2nd mention
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(E1_2nd_mention), align = "ccc")
| year | E1_2nd_mention | n |
|---|---|---|
| 2005 | 0 | 399 |
| 2005 | 1 | 27 |
| 2005 | 3 | 8 |
| 2005 | 5 | 1 |
| 2005 | 6 | 2 |
| 2005 | 7 | 105 |
| 2009 | 0 | 405 |
| 2009 | 1 | 23 |
| 2009 | 3 | 10 |
| 2009 | 5 | 2 |
| 2009 | 6 | 10 |
| 2009 | 7 | 91 |
| 2009 | 8 | 1 |
Employment status – 3rd mention
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(E1_3rd_mention), align = "ccc")
| year | E1_3rd_mention | n |
|---|---|---|
| 2005 | 0 | 538 |
| 2005 | 1 | 1 |
| 2005 | 3 | 1 |
| 2005 | 6 | 1 |
| 2005 | 7 | 1 |
| 2009 | 0 | 541 |
| 2009 | 1 | 1 |
Work for money [1 = Yes; 5 = No; 8 = DK; 9 = NA]
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(E3), align = "ccc")
| year | E3 | n |
|---|---|---|
| 2005 | 0 | 290 |
| 2005 | 1 | 71 |
| 2005 | 5 | 180 |
| 2005 | 9 | 1 |
| 2009 | 0 | 401 |
| 2009 | 1 | 20 |
| 2009 | 5 | 121 |
Education status [1 = Graduated from high school; 2 = Got a GED; 3 = Neither]
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(G1), align = "ccc")
| year | G1 | n |
|---|---|---|
| 2005 | 1 | 526 |
| 2005 | 2 | 1 |
| 2005 | 3 | 13 |
| 2005 | 9 | 2 |
| 2009 | 1 | 537 |
| 2009 | 2 | 4 |
| 2009 | 3 | 1 |
Attended College [1 = Yes; 5 = No]
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(G10), align = "ccc")
| year | G10 | n |
|---|---|---|
| 2005 | 0 | 14 |
| 2005 | 1 | 414 |
| 2005 | 5 | 113 |
| 2005 | 9 | 1 |
| 2009 | 0 | 1 |
| 2009 | 1 | 443 |
| 2009 | 5 | 98 |
Attending College [1 = Yes; 5 = No]
knitr::kable(Long_format_2005_2009 %>% group_by(year) %>% count(G11), align = "ccc")
| year | G11 | n |
|---|---|---|
| 2005 | 0 | 128 |
| 2005 | 1 | 347 |
| 2005 | 5 | 67 |
| 2009 | 0 | 99 |
| 2009 | 1 | 166 |
| 2009 | 5 | 277 |
Filter the data (2009 & 2015)
Long_format_2009_2015 <- TAS_data_long_format_age %>% filter (TAS09 == 1) %>% filter (TAS15 == 1) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1)) %>% group_by(TAS_ID) %>% mutate(Age_18_graduate = case_when(Age_18_graduate == 2033 ~ Age_18_graduate[year == 2009] + 6, Age_18_graduate == 2027 ~ Age_18_graduate[year == 2015] - 6, TRUE ~ Age_18_graduate)) %>% ungroup() %>% filter (Age_18_graduate <100) %>% group_by(TAS_ID) %>% mutate(age_difference = Age_18_graduate[year == 2015] - Age_18_graduate[year == 2009]) %>% filter(age_difference < 8) %>% filter(age_difference > 4) %>% ungroup()
view(Long_format_2009_2015)
knitr::kable(head(Long_format_2009_2015[, 1:43]))
| TAS | TAS05 | TAS09 | TAS15 | TAS_ID | Gender | Individual is sample | Year ID Number | Sequence Number | Relationship to Head | Release Number | B5A | B5D | B6C | C2D | C2E | C2F | D2D3_month | D2D3_year | E1_1st_mention | E1_2nd_mention | E1_3rd_mention | E3 | G1 | G2_month | G2_year | G10 | G11 | G30A | G41A | G41B | G41C | G41H | G41P | H1 | L7_1st_mention | L7_2nd_mention | L7_3rd_mention | Age_17_graduate | Age_18_graduate | year | year_new | age_difference |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | NA | 1 | 1 | 4_39 | 2 | 2 | 13 | 3 | 60 | 3 | 4 | 5 | 4 | 6 | 7 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2008 | 1 | 5 | 5 | 6 | 5 | 2 | 7 | 6 | 2 | 1 | 0 | 0 | 18 | 19 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 7_40 | 2 | 2 | 3836 | 2 | 22 | 3 | 2 | 2 | 7 | 7 | 3 | 4 | 0 | 0 | 6 | 0 | 0 | 5 | 1 | 6 | 2007 | 5 | 0 | 5 | 5 | 2 | 5 | 6 | 5 | 3 | 1 | 0 | 0 | 19 | 20 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 7_41 | 1 | 2 | 576 | 2 | 30 | 3 | 3 | 4 | 7 | 4 | 5 | 4 | 0 | 0 | 3 | 0 | 0 | 5 | 1 | 5 | 2009 | 5 | 0 | 7 | 5 | 6 | 5 | 7 | 5 | 2 | 1 | 0 | 0 | 17 | 18 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 10_34 | 2 | 2 | 3276 | 3 | 30 | 3 | 4 | 5 | 6 | 4 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 6 | 2008 | 1 | 5 | 7 | 7 | 5 | 4 | 7 | 5 | 2 | 2 | 0 | 0 | 18 | 19 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 14_31 | 2 | 2 | 713 | 1 | 10 | 3 | 5 | 5 | 7 | 4 | 4 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 6 | 2005 | 5 | 0 | 6 | 5 | 7 | 6 | 7 | 2 | 4 | 1 | 0 | 0 | 21 | 22 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 22_30 | 2 | 2 | 907 | 2 | 30 | 3 | 5 | 1 | 4 | 3 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2006 | 1 | 1 | 7 | 6 | 6 | 6 | 6 | 6 | 1 | 2 | 0 | 0 | 20 | 21 | 2009 | 0 | 6 |
knitr::kable(count(Long_format_2009_2015, year), align = "cc")
| year | n |
|---|---|
| 2009 | 515 |
| 2015 | 515 |
knitr::kable(count(Long_format_2009_2015, Age_18_graduate), align = "ccc")
| Age_18_graduate | n |
|---|---|
| 15 | 1 |
| 18 | 154 |
| 19 | 134 |
| 20 | 136 |
| 21 | 89 |
| 22 | 2 |
| 24 | 155 |
| 25 | 134 |
| 26 | 136 |
| 27 | 87 |
| 28 | 2 |
Age count - 2009
knitr::kable(Long_format_2009_2015 %>% filter(year == 2009) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 15 | 1 |
| 18 | 154 |
| 19 | 134 |
| 20 | 136 |
| 21 | 88 |
| 22 | 2 |
Age count - 2015
knitr::kable(Long_format_2009_2015 %>% filter(year == 2015) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 21 | 1 |
| 24 | 155 |
| 25 | 134 |
| 26 | 136 |
| 27 | 87 |
| 28 | 2 |
data_2009 <- Long_format_2009_2015 %>% filter(year_new == 0)
data_2015 <- Long_format_2009_2015 %>% filter(year_new == 1)
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(B5A), align = "ccc")
| year | B5A | n |
|---|---|---|
| 2009 | 1 | 34 |
| 2009 | 2 | 94 |
| 2009 | 3 | 113 |
| 2009 | 4 | 157 |
| 2009 | 5 | 116 |
| 2009 | 9 | 1 |
| 2015 | 1 | 12 |
| 2015 | 2 | 15 |
| 2015 | 3 | 35 |
| 2015 | 4 | 92 |
| 2015 | 5 | 359 |
| 2015 | 8 | 2 |
remove_id_B5A_09 <- Long_format_2009_2015 %>% filter(year_new == 0,B5A > 7) %>% pull(TAS_ID)
remove_id_B5A_15 <- Long_format_2009_2015 %>% filter(year_new == 1, B5A > 7) %>% pull(TAS_ID)
data_2009_B5A <- Long_format_2009_2015 %>% filter(year_new == 0) %>% filter(B5A < 7) %>% filter(!(TAS_ID %in% remove_id_B5A_15))
data_2015_B5A <- Long_format_2009_2015 %>% filter(year_new == 1) %>% filter(B5A < 7) %>% filter(!(TAS_ID %in% remove_id_B5A_09))
B5A_t_test_09_15 <- t.test(data_2009_B5A$B5A, data_2015_B5A$B5A, paired = TRUE)
B5A_t_test_09_15
##
## Paired t-test
##
## data: data_2009_B5A$B5A and data_2015_B5A$B5A
## t = -17.111, df = 511, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -1.1823174 -0.9387764
## sample estimates:
## mean difference
## -1.060547
knitr::kable(Long_format_2009_2015 %>% filter(B5A < 7) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% count(B5A), align = "ccc")
| year | B5A | n |
|---|---|---|
| 2009 | 1 | 34 |
| 2009 | 2 | 94 |
| 2009 | 3 | 111 |
| 2009 | 4 | 157 |
| 2009 | 5 | 116 |
| 2015 | 1 | 12 |
| 2015 | 2 | 15 |
| 2015 | 3 | 35 |
| 2015 | 4 | 91 |
| 2015 | 5 | 359 |
knitr::kable(Long_format_2009_2015 %>% filter(B5A < 7) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% count(year), align = "cc")
| year | n |
|---|---|
| 2009 | 512 |
| 2015 | 512 |
mean_B5A_0915 <- Long_format_2009_2015 %>% filter(B5A < 7) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% summarize(average_B5A = mean(B5A, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_B5A_0915), align = "cc")
| year | average_B5A |
|---|---|
| 2009 | 3.443359 |
| 2015 | 4.503906 |
sd_B5A_0915 <- Long_format_2009_2015 %>% filter(B5A < 7) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% summarize(sd_B5A = sd(B5A, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_B5A_0915), align = "cc")
| year | sd_B5A |
|---|---|
| 2009 | 1.2117796 |
| 2015 | 0.9194487 |
Long_format_2009_2015 %>% filter(B5A < 7) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% ggplot(aes(x = factor(year), y = B5A, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Responsibility for Self (B5A) in 2009 and 2015", x = "Year", y = "Responsibility for Self (B5A)") + scale_fill_manual(values = c("2009" = "skyblue", "2015" = "salmon")) + theme_minimal()
effect_size_B5A_09_15 <- cohens_d(data_2009_B5A$B5A, data_2015_B5A$B5A, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_B5A_09_15
## Cohen's d | 95% CI
## --------------------------
## -0.76 | [-0.85, -0.66]
B6C_t_test_09_15 <- t.test(data_2009$B6C, data_2015$B6C, paired = TRUE)
B6C_t_test_09_15
##
## Paired t-test
##
## data: data_2009$B6C and data_2015$B6C
## t = 1.5235, df = 514, p-value = 0.1282
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.02586079 0.20450156
## sample estimates:
## mean difference
## 0.08932039
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(B6C), align = "ccc")
| year | B6C | n |
|---|---|---|
| 2009 | 1 | 4 |
| 2009 | 2 | 11 |
| 2009 | 3 | 17 |
| 2009 | 4 | 62 |
| 2009 | 5 | 154 |
| 2009 | 6 | 139 |
| 2009 | 7 | 128 |
| 2015 | 1 | 4 |
| 2015 | 2 | 7 |
| 2015 | 3 | 27 |
| 2015 | 4 | 74 |
| 2015 | 5 | 140 |
| 2015 | 6 | 157 |
| 2015 | 7 | 106 |
mean_B6C_0915 <- Long_format_2009_2015 %>% group_by(year) %>% summarize(average_B6C = mean(B6C, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_B6C_0915), align = "cc")
| year | average_B6C |
|---|---|
| 2009 | 5.485437 |
| 2015 | 5.396116 |
sd_B6C_0915 <- Long_format_2009_2015 %>% group_by(year) %>% summarize(sd_B6C = sd(B6C, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_B6C_0915), align = "cc")
| year | sd_B6C |
|---|---|
| 2009 | 1.265096 |
| 2015 | 1.254713 |
ggplot(Long_format_2009_2015, aes(x = factor(year), y = B6C, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Money management skills (B6C) in 2009 and 2015", x = "Year", y = "Money management skills (B6C)") + scale_fill_manual(values = c("2009" = "skyblue", "2015" = "salmon")) + theme_minimal()
effect_size_B6C_09_15 <- cohens_d(data_2009$B6C, data_2015$B6C, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_B6C_09_15
## Cohen's d | 95% CI
## -------------------------
## 0.07 | [-0.02, 0.15]
C2D_t_test_09_15 <- t.test(data_2009$C2D, data_2015$C2D, paired = TRUE)
C2D_t_test_09_15
##
## Paired t-test
##
## data: data_2009$C2D and data_2015$C2D
## t = 3.2447, df = 514, p-value = 0.001252
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.1256330 0.5112602
## sample estimates:
## mean difference
## 0.3184466
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(C2D), align = "ccc")
| year | C2D | n |
|---|---|---|
| 2009 | 1 | 77 |
| 2009 | 2 | 97 |
| 2009 | 3 | 65 |
| 2009 | 4 | 89 |
| 2009 | 5 | 79 |
| 2009 | 6 | 49 |
| 2009 | 7 | 59 |
| 2015 | 1 | 98 |
| 2015 | 2 | 99 |
| 2015 | 3 | 84 |
| 2015 | 4 | 78 |
| 2015 | 5 | 73 |
| 2015 | 6 | 46 |
| 2015 | 7 | 37 |
mean_C2D_0915 <- Long_format_2009_2015 %>% group_by(year) %>% summarize(average_C2D = mean(C2D, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_C2D_0915), align = "cc")
| year | average_C2D |
|---|---|
| 2009 | 3.735922 |
| 2015 | 3.417476 |
sd_C2D_0915 <- Long_format_2009_2015 %>% group_by(year) %>% summarize(sd_C2D = sd(C2D, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_C2D_0915), align = "cc")
| year | sd_C2D |
|---|---|
| 2009 | 1.930749 |
| 2015 | 1.859481 |
ggplot(Long_format_2009_2015, aes(x = factor(year), y = C2D, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Worry about expenses (C2D) in 2009 and 2015", x = "Year", y = "Worry about expenses (C2D)") + scale_fill_manual(values = c("2009" = "skyblue", "2015" = "salmon")) + theme_minimal()
effect_size_C2D_09_15 <- cohens_d(data_2009$C2D, data_2015$C2D, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_C2D_09_15
## Cohen's d | 95% CI
## ------------------------
## 0.14 | [0.06, 0.23]
C2E_t_test_09_15 <- t.test(data_2009$C2E, data_2015$C2E, paired = TRUE)
C2E_t_test_09_15
##
## Paired t-test
##
## data: data_2009$C2E and data_2015$C2E
## t = 5.1874, df = 514, p-value = 3.073e-07
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.2907333 0.6451890
## sample estimates:
## mean difference
## 0.4679612
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(C2E), align = "ccc")
| year | C2E | n |
|---|---|---|
| 2009 | 1 | 89 |
| 2009 | 2 | 89 |
| 2009 | 3 | 77 |
| 2009 | 4 | 86 |
| 2009 | 5 | 76 |
| 2009 | 6 | 36 |
| 2009 | 7 | 62 |
| 2015 | 1 | 109 |
| 2015 | 2 | 111 |
| 2015 | 3 | 96 |
| 2015 | 4 | 74 |
| 2015 | 5 | 67 |
| 2015 | 6 | 25 |
| 2015 | 7 | 33 |
mean_C2E_0915 <- Long_format_2009_2015 %>% group_by(year) %>% summarize(average_C2E = mean(C2E, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_C2E_0915), align = "cc")
| year | average_C2E |
|---|---|
| 2009 | 3.634952 |
| 2015 | 3.166990 |
sd_C2E_0915 <- Long_format_2009_2015 %>% group_by(year) %>% summarize(sd_C2E = sd(C2E, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_C2E_0915), align = "cc")
| year | sd_C2E |
|---|---|
| 2009 | 1.944448 |
| 2015 | 1.779498 |
ggplot(Long_format_2009_2015, aes(x = factor(year), y = C2E, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Worry about future job (C2E) in 2009 and 2015", x = "Year", y = "Worry about future job (C2E)") + scale_fill_manual(values = c("2009" = "skyblue", "2015" = "salmon")) + theme_minimal()
effect_size_C2E_09_15 <- cohens_d(data_2009$C2E, data_2015$C2E, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_C2E_09_15
## Cohen's d | 95% CI
## ------------------------
## 0.23 | [0.14, 0.32]
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(G41A), align = "ccc")
| year | G41A | n |
|---|---|---|
| 2009 | 1 | 30 |
| 2009 | 2 | 14 |
| 2009 | 3 | 39 |
| 2009 | 4 | 70 |
| 2009 | 5 | 128 |
| 2009 | 6 | 89 |
| 2009 | 7 | 144 |
| 2009 | 9 | 1 |
| 2015 | 1 | 54 |
| 2015 | 2 | 50 |
| 2015 | 3 | 50 |
| 2015 | 4 | 73 |
| 2015 | 5 | 115 |
| 2015 | 6 | 75 |
| 2015 | 7 | 98 |
remove_id_G41A <- Long_format_2009_2015 %>% filter(year_new == 0,G41A == 9) %>% pull(TAS_ID)
data_2009_G41A <- Long_format_2009_2015 %>% filter(year_new == 0) %>% filter(G41A != 9)
data_2015_G41A <- Long_format_2009_2015 %>% filter(year_new == 1) %>% filter(!(TAS_ID %in% remove_id_G41A))
knitr::kable(Long_format_2009_2015 %>% filter(G41A != 9) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% count(G41A), align = "ccc")
| year | G41A | n |
|---|---|---|
| 2009 | 1 | 30 |
| 2009 | 2 | 14 |
| 2009 | 3 | 39 |
| 2009 | 4 | 70 |
| 2009 | 5 | 128 |
| 2009 | 6 | 89 |
| 2009 | 7 | 144 |
| 2015 | 1 | 54 |
| 2015 | 2 | 50 |
| 2015 | 3 | 50 |
| 2015 | 4 | 73 |
| 2015 | 5 | 115 |
| 2015 | 6 | 74 |
| 2015 | 7 | 98 |
knitr::kable(Long_format_2009_2015 %>% filter(G41A != 9) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% count(year), align = "cc")
| year | n |
|---|---|
| 2009 | 514 |
| 2015 | 514 |
G41A_t_test_09_15 <- t.test(data_2009_G41A$G41A, data_2015_G41A$G41A, paired = TRUE)
G41A_t_test_09_15
##
## Paired t-test
##
## data: data_2009_G41A$G41A and data_2015_G41A$G41A
## t = 8.2779, df = 513, p-value = 1.093e-15
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.4985536 0.8088394
## sample estimates:
## mean difference
## 0.6536965
mean_G41A_0915 <- Long_format_2009_2015 %>% filter(G41A != 9) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% summarize(average_G41A = mean(G41A, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_G41A_0915), align = "cc")
| year | average_G41A |
|---|---|
| 2009 | 5.130350 |
| 2015 | 4.476654 |
sd_G41A_0915 <- Long_format_2009_2015 %>% filter(G41A != 9) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% summarize(sd_G41A = sd(G41A, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_G41A_0915), align = "cc")
| year | sd_G41A |
|---|---|
| 2009 | 1.703263 |
| 2015 | 1.930680 |
Long_format_2009_2015 %>% filter(G41A != 9) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% ggplot(aes(x = factor(year), y = G41A, fill = factor(year))) + geom_boxplot() + stat_summary(fun = "mean", geom = "crossbar", width = 0.75, color = "black", size = 0.2, linetype = "dashed") + labs(title = "Boxplot of Importance of job status (G41A) in 2009 and 2015", x = "Year", y = "Importance of job status (G41A)") + scale_fill_manual(values = c("2009" = "skyblue", "2015" = "salmon")) + theme_minimal()
effect_size_G41A_09_15 <- cohens_d(data_2009_G41A$G41A, data_2015_G41A$G41A, paired = TRUE)
## For paired samples, 'repeated_measures_d()' provides more options.
effect_size_G41A_09_15
## Cohen's d | 95% CI
## ------------------------
## 0.37 | [0.28, 0.45]
##2009 & 2015
Filter the data (2009 & 2015)
Long_format_2009_2015 <- TAS_data_long_format_age %>% filter (TAS09 == 1) %>% filter (TAS15 == 1) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1)) %>% group_by(TAS_ID) %>% mutate(Age_18_graduate = case_when(Age_18_graduate == 2033 ~ Age_18_graduate[year == 2009] + 6, Age_18_graduate == 2027 ~ Age_18_graduate[year == 2015] - 6, TRUE ~ Age_18_graduate)) %>% ungroup() %>% filter (Age_18_graduate <100) %>% group_by(TAS_ID) %>% mutate(age_difference = Age_18_graduate[year == 2015] - Age_18_graduate[year == 2009]) %>% filter(age_difference < 8) %>% filter(age_difference > 4) %>% ungroup()
view(Long_format_2009_2015)
knitr::kable(head(Long_format_2009_2015[, 1:43]))
| TAS | TAS05 | TAS09 | TAS15 | TAS_ID | Gender | Individual is sample | Year ID Number | Sequence Number | Relationship to Head | Release Number | B5A | B5D | B6C | C2D | C2E | C2F | D2D3_month | D2D3_year | E1_1st_mention | E1_2nd_mention | E1_3rd_mention | E3 | G1 | G2_month | G2_year | G10 | G11 | G30A | G41A | G41B | G41C | G41H | G41P | H1 | L7_1st_mention | L7_2nd_mention | L7_3rd_mention | Age_17_graduate | Age_18_graduate | year | year_new | age_difference |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | NA | 1 | 1 | 4_39 | 2 | 2 | 13 | 3 | 60 | 3 | 4 | 5 | 4 | 6 | 7 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2008 | 1 | 5 | 5 | 6 | 5 | 2 | 7 | 6 | 2 | 1 | 0 | 0 | 18 | 19 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 7_40 | 2 | 2 | 3836 | 2 | 22 | 3 | 2 | 2 | 7 | 7 | 3 | 4 | 0 | 0 | 6 | 0 | 0 | 5 | 1 | 6 | 2007 | 5 | 0 | 5 | 5 | 2 | 5 | 6 | 5 | 3 | 1 | 0 | 0 | 19 | 20 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 7_41 | 1 | 2 | 576 | 2 | 30 | 3 | 3 | 4 | 7 | 4 | 5 | 4 | 0 | 0 | 3 | 0 | 0 | 5 | 1 | 5 | 2009 | 5 | 0 | 7 | 5 | 6 | 5 | 7 | 5 | 2 | 1 | 0 | 0 | 17 | 18 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 10_34 | 2 | 2 | 3276 | 3 | 30 | 3 | 4 | 5 | 6 | 4 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 6 | 2008 | 1 | 5 | 7 | 7 | 5 | 4 | 7 | 5 | 2 | 2 | 0 | 0 | 18 | 19 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 14_31 | 2 | 2 | 713 | 1 | 10 | 3 | 5 | 5 | 7 | 4 | 4 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 6 | 2005 | 5 | 0 | 6 | 5 | 7 | 6 | 7 | 2 | 4 | 1 | 0 | 0 | 21 | 22 | 2009 | 0 | 6 |
| 2 | NA | 1 | 1 | 22_30 | 2 | 2 | 907 | 2 | 30 | 3 | 5 | 1 | 4 | 3 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2006 | 1 | 1 | 7 | 6 | 6 | 6 | 6 | 6 | 1 | 2 | 0 | 0 | 20 | 21 | 2009 | 0 | 6 |
Year
knitr::kable(count(Long_format_2009_2015, year), align = "cc")
| year | n |
|---|---|
| 2009 | 515 |
| 2015 | 515 |
Age
knitr::kable(count(Long_format_2009_2015, Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 15 | 1 |
| 18 | 154 |
| 19 | 134 |
| 20 | 136 |
| 21 | 89 |
| 22 | 2 |
| 24 | 155 |
| 25 | 134 |
| 26 | 136 |
| 27 | 87 |
| 28 | 2 |
Age by year(2009)
knitr::kable(Long_format_2009_2015 %>% filter(year == 2009) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 15 | 1 |
| 18 | 154 |
| 19 | 134 |
| 20 | 136 |
| 21 | 88 |
| 22 | 2 |
Age by year (2015)
knitr::kable(Long_format_2009_2015 %>% filter(year == 2015) %>% count(Age_18_graduate), align = "cc")
| Age_18_graduate | n |
|---|---|
| 21 | 1 |
| 24 | 155 |
| 25 | 134 |
| 26 | 136 |
| 27 | 87 |
| 28 | 2 |
Gender [1 = Male; 2 = Female]
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(Gender), align = "ccc")
| year | Gender | n |
|---|---|---|
| 2009 | 1 | 219 |
| 2009 | 2 | 296 |
| 2015 | 1 | 219 |
| 2015 | 2 | 296 |
Years graduated high school
knitr::kable(Long_format_2009_2015 %>% filter(G2_year != 0) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% count(G2_year) %>% ungroup(), align = "ccc")
| year | G2_year | n |
|---|---|---|
| 2009 | 2006 | 14 |
| 2009 | 2007 | 29 |
| 2009 | 2008 | 32 |
| 2009 | 2009 | 49 |
| 2015 | 2006 | 13 |
| 2015 | 2007 | 29 |
| 2015 | 2008 | 32 |
| 2015 | 2009 | 50 |
knitr::kable(Long_format_2009_2015 %>% filter(G2_year != 0) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% count(year), align = "ccc")
| year | n |
|---|---|
| 2009 | 124 |
| 2015 | 124 |
mean_year_graduation <- Long_format_2009_2015 %>% filter(G2_year != 0) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% summarize(mean_graduation = mean(G2_year, na.rm = TRUE)) %>% ungroup()
knitr::kable((mean_year_graduation), align = "cc")
| year | mean_graduation |
|---|---|
| 2009 | 2007.935 |
| 2015 | 2007.960 |
sd_year_graduation <- Long_format_2009_2015 %>% filter(G2_year != 0) %>% group_by(TAS_ID) %>% filter(n_distinct(year) == 2) %>% ungroup() %>% group_by(year) %>% summarize(sd_graduation = sd(G2_year, na.rm = TRUE)) %>% ungroup()
knitr::kable((sd_year_graduation), align = "cc")
| year | sd_graduation |
|---|---|
| 2009 | 1.041746 |
| 2015 | 1.031214 |
Race – 1st mention [1 = White; 2 = Black, African-American, or Negro; 3 = American Indian or Alaska Native; 4 = Asian; 5 = Native Hawaiian or Pacific Islander; 7 = Some other race; 8 = DK; 9 = NA]
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(L7_1st_mention), align = "ccc")
| year | L7_1st_mention | n |
|---|---|---|
| 2009 | 1 | 261 |
| 2009 | 2 | 198 |
| 2009 | 3 | 7 |
| 2009 | 4 | 10 |
| 2009 | 7 | 37 |
| 2009 | 8 | 1 |
| 2009 | 9 | 1 |
| 2015 | 1 | 274 |
| 2015 | 2 | 195 |
| 2015 | 3 | 8 |
| 2015 | 4 | 8 |
| 2015 | 7 | 26 |
| 2015 | 9 | 4 |
Race – 2nd mention
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(L7_2nd_mention), align = "ccc")
| year | L7_2nd_mention | n |
|---|---|---|
| 2009 | 0 | 489 |
| 2009 | 1 | 8 |
| 2009 | 2 | 3 |
| 2009 | 3 | 10 |
| 2009 | 4 | 1 |
| 2009 | 5 | 2 |
| 2009 | 7 | 2 |
| 2015 | 0 | 497 |
| 2015 | 1 | 4 |
| 2015 | 2 | 4 |
| 2015 | 3 | 8 |
| 2015 | 4 | 2 |
Race – 3rd mention
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(L7_3rd_mention), align = "ccc")
| year | L7_3rd_mention | n |
|---|---|---|
| 2009 | 0 | 513 |
| 2009 | 3 | 2 |
| 2015 | 0 | 513 |
| 2015 | 1 | 1 |
| 2015 | 3 | 1 |
Widowed – year
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(D2D3_year), align = "ccc")
| year | D2D3_year | n |
|---|---|---|
| 2009 | 0 | 512 |
| 2009 | 2009 | 3 |
| 2015 | 0 | 503 |
| 2015 | 2009 | 2 |
| 2015 | 2012 | 3 |
| 2015 | 2014 | 7 |
Employment status – 1st mention [1 = Working now, including military; 2 = Only temporarily laid off; sick or maternity leave; 3 = Looking for work, unemployed; 4 = Retired; 5 = Disabled, permanently or temporarily; 6 = Keeping house; 7 = Student; 8 = Other]
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(E1_1st_mention), align = "ccc")
| year | E1_1st_mention | n |
|---|---|---|
| 2009 | 1 | 242 |
| 2009 | 3 | 93 |
| 2009 | 6 | 12 |
| 2009 | 7 | 167 |
| 2009 | 99 | 1 |
| 2015 | 1 | 406 |
| 2015 | 2 | 2 |
| 2015 | 3 | 49 |
| 2015 | 5 | 4 |
| 2015 | 6 | 22 |
| 2015 | 7 | 32 |
Employment status – 2nd mention
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(E1_2nd_mention), align = "ccc")
| year | E1_2nd_mention | n |
|---|---|---|
| 2009 | 0 | 301 |
| 2009 | 1 | 35 |
| 2009 | 2 | 1 |
| 2009 | 3 | 28 |
| 2009 | 6 | 3 |
| 2009 | 7 | 147 |
| 2015 | 0 | 445 |
| 2015 | 1 | 6 |
| 2015 | 3 | 4 |
| 2015 | 6 | 16 |
| 2015 | 7 | 44 |
E1: Employment status – 3rd mention
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(E1_3rd_mention), align = "ccc")
| year | E1_3rd_mention | n |
|---|---|---|
| 2009 | 0 | 514 |
| 2009 | 6 | 1 |
| 2015 | 0 | 515 |
Work for money [1 = Yes; 5 = No; 8 = DK; 9 = NA]
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(E3), align = "ccc")
| year | E3 | n |
|---|---|---|
| 2009 | 0 | 277 |
| 2009 | 1 | 31 |
| 2009 | 5 | 207 |
| 2015 | 0 | 414 |
| 2015 | 1 | 8 |
| 2015 | 5 | 93 |
Education status [1 = Graduated from high school; 2 = Got a GED; 3 = Neither]
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(G1), align = "ccc")
| year | G1 | n |
|---|---|---|
| 2009 | 1 | 511 |
| 2009 | 2 | 3 |
| 2009 | 3 | 1 |
| 2015 | 0 | 370 |
| 2015 | 1 | 139 |
| 2015 | 2 | 5 |
| 2015 | 3 | 1 |
Attended College [1 = Yes; 5 = No]
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(G10), align = "ccc")
| year | G10 | n |
|---|---|---|
| 2009 | 0 | 1 |
| 2009 | 1 | 385 |
| 2009 | 5 | 129 |
| 2015 | 0 | 403 |
| 2015 | 1 | 35 |
| 2015 | 5 | 77 |
Attending College [1 = Yes; 5 = No]
knitr::kable(Long_format_2009_2015 %>% group_by(year) %>% count(G11), align = "ccc")
| year | G11 | n |
|---|---|---|
| 2009 | 0 | 130 |
| 2009 | 1 | 323 |
| 2009 | 5 | 62 |
| 2015 | 0 | 79 |
| 2015 | 1 | 86 |
| 2015 | 5 | 350 |
df_long <- bind_rows(
mutate(B5A_means, Variable = "B5A"),
mutate(B6C_means, Variable = "B6C"),
mutate(C2D_means, Variable = "C2D"),
mutate(C2E_means, Variable = "C2E"),
mutate(G41A_means, Variable = "G41A"))
year_colors <- c("2005" = "#990000", "2009" = "#0A2240", "2015" = "#BEBEBE")
knitr::kable(df_long, align = "ccccc")
| year_new | Mean | SD | Count | Variable |
|---|---|---|---|---|
| 2005 | 3.376405 | 1.105125 | 356 | B5A |
| 2009 | 3.282609 | 1.151481 | 368 | B5A |
| 2015 | 3.456693 | 1.136918 | 254 | B5A |
| 2005 | 5.390449 | 1.434708 | 356 | B6C |
| 2009 | 5.520325 | 1.231491 | 369 | B6C |
| 2015 | 5.366142 | 1.370134 | 254 | B6C |
| 2005 | 3.702247 | 1.884285 | 356 | C2D |
| 2009 | 3.661247 | 1.925696 | 369 | C2D |
| 2015 | 3.476378 | 1.853699 | 254 | C2D |
| 2005 | 3.567416 | 1.945296 | 356 | C2E |
| 2009 | 3.628726 | 1.974109 | 369 | C2E |
| 2015 | 3.629921 | 1.975355 | 254 | C2E |
| 2005 | 5.362360 | 1.627454 | 356 | G41A |
| 2009 | 5.331522 | 1.530395 | 368 | G41A |
| 2015 | 4.874016 | 1.728588 | 254 | G41A |
ggplot(df_long, aes(x = Variable, y = Mean, fill = year_new, group = year_new)) + geom_bar(stat = "identity", position = position_dodge(width = 0.8), color = "black", width = 0.5) + geom_errorbar(aes(ymin = Mean - SD, ymax = Mean + SD), position = position_dodge(width = 0.8), width = 0.25, colour = "#000000", size = 1) + scale_fill_manual(values = year_colors) + labs(title = "2005 vs 2009 vs 2015 (between person; 18-19 y/o)", x = "Variables", y = "Mean Value", fill = "Year") + theme_minimal() + theme(axis.text.x = element_text(angle = 0, hjust = 0.5, vjust = 0.5), axis.ticks.length = unit(0.3, "cm")) + theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank(),plot.title = element_text(size = 16, face = "bold"),axis.title.x = element_text(vjust = -2)) + scale_x_discrete(labels = c("B5A" = "B5A: \n Responsibility \n for Self", "B6C" = "B6C:\n Money Management \n Skills", "C2D" = "C2D:\n Worry about \n Expenses", "C2E" = "C2E:\n Worry about \n Future Job", "G41A" = "G41A:\n Importance of \n Job Status")) + scale_y_continuous(breaks = seq(1, 7, by = 1), expand = c(0, 0)) + coord_cartesian(ylim = c(1, 9)) +
geom_segment(aes(x = 5 - 0.28, xend = 5 + 0.28, y = 8.3, yend = 8.3), color = "black") +
annotate("text", x = 5, y = 8.65, label = "p = 0.001", size = 3.2) +
geom_segment(aes(x = 5 - 0.28, xend = 5 - 0.28, y = 8.3, yend = 8), color = "black") +
geom_segment(aes(x = 5 + 0.28, xend = 5 + 0.28, y = 8.3, yend = 8), color = "black") +
geom_segment(aes(x = 5.15 - 0.17, xend = 5.15 + 0.17, y = 7.4, yend = 7.4), color = "black") +
annotate("text", x = 5.15, y = 7.7, label = "p = 0.002", size = 3.2) +
geom_segment(aes(x = 5.15 - 0.17, xend = 5.15 - 0.17, y = 7.4, yend = 7.1), color = "black") +
geom_segment(aes(x = 5.15 + 0.17, xend = 5.15 + 0.17, y = 7.4, yend = 7.1), color = "black")
df_long_0509_mess <- bind_rows(mutate(mean_B5A_0509, SD = sd_B5A_0509$sd_B5A, Variable = "B5A"), mutate(mean_B6C_0509, SD = sd_B6C_0509$sd_B6C, Variable = "B6C"), mutate(mean_C2D_0509, SD = sd_C2D_0509$sd_C2D, Variable = "C2D"), mutate(mean_C2E_0509, SD = sd_C2E_0509$sd_C2E, Variable = "C2E"), mutate(mean_G41A_0509, SD = sd_G41A_0509$sd_G41A, Variable = "G41A")) %>% gather(key = "Measure", value = "Average", average_B5A, average_B6C, average_C2D, average_C2E, average_G41A)
df_long_0509 <- df_long_0509_mess %>% filter(!is.na(Average), !is.na(SD)) %>% filter(Average >= 0 & Average <= 7)
year_colors_0509 <- c("2005" = "#990000", "2009" = "#0A2240")
knitr::kable(df_long_0509, align = "ccccc")
| year | SD | Variable | Measure | Average |
|---|---|---|---|---|
| 2005 | 1.1753865 | B5A | average_B5A | 3.487085 |
| 2009 | 0.9776143 | B5A | average_B5A | 4.315498 |
| 2005 | 1.4445587 | B6C | average_B6C | 5.278598 |
| 2009 | 1.2722460 | B6C | average_B6C | 5.365314 |
| 2005 | 1.8437556 | C2D | average_C2D | 3.651292 |
| 2009 | 1.8698942 | C2D | average_C2D | 3.933579 |
| 2005 | 1.8982344 | C2E | average_C2E | 3.485240 |
| 2009 | 1.9034159 | C2E | average_C2E | 3.725092 |
| 2005 | 1.6533276 | G41A | average_G41A | 5.239852 |
| 2009 | 1.8311009 | G41A | average_G41A | 4.632841 |
ggplot(df_long_0509, aes(x = Variable, y = Average, fill = as.factor(year), group = year)) + geom_bar(stat = "identity", position = position_dodge(width = 0.8), color = "black", width = 0.5) + geom_errorbar(aes(ymin = Average - SD, ymax = Average + SD), position = position_dodge(width = 0.8), width = 0.25, colour = "#000000", size = 1) + scale_fill_manual(values = year_colors_0509) + labs(title = "2005 vs 2009 (within person)", x = "Variables", y = "Mean Value", fill = "Year") + theme_minimal() + theme(axis.text.x = element_text(angle = 0, hjust = 0.5, vjust = 0.5), axis.ticks.length = unit(0.3, "cm"))+ theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank(),plot.title = element_text(size = 16, face = "bold"),axis.title.x = element_text(vjust = -2)) + scale_x_discrete(labels = c("B5A" = "B5A: \n Responsibility \n for Self", "B6C" = "B6C:\n Money Management \n Skills", "C2D" = "C2D:\n Worry about \n Expenses", "C2E" = "C2E:\n Worry about \n Future Job", "G41A" = "G41A:\n Importance of \n Job Status")) + scale_y_continuous(breaks = seq(1, 7, by = 1), expand = c(0, 0)) + coord_cartesian(ylim = c(1, 9)) +
geom_segment(aes(x = 1 - 0.24, xend = 1 + 0.24, y = 5.8, yend = 5.8), color = "black") +
annotate("text", x = 1, y = 6.15, label = "p = 0.000", size = 3.2) +
geom_segment(aes(x = 1 - 0.24, xend = 1 - 0.24, y = 5.8, yend = 5.5), color = "black") +
geom_segment(aes(x = 1 + 0.24, xend = 1 + 0.24, y = 5.8, yend = 5.5), color = "black") +
geom_segment(aes(x = 3 - 0.24, xend = 3 + 0.24, y = 6.4, yend = 6.4), color = "black") +
annotate("text", x = 3, y = 6.75, label = "p = 0.003", size = 3.2) +
geom_segment(aes(x = 3 - 0.24, xend = 3 - 0.24, y = 6.4, yend = 6.1), color = "black") +
geom_segment(aes(x = 3 + 0.24, xend = 3 + 0.24, y = 6.4, yend = 6.1), color = "black") +
geom_segment(aes(x = 4 - 0.24, xend = 4 + 0.24, y = 6.2, yend = 6.2), color = "black") +
annotate("text", x = 4, y = 6.55, label = "p = 0.010", size = 3.2) +
geom_segment(aes(x = 4 - 0.24, xend = 4 - 0.24, y = 6.2, yend = 5.9), color = "black") +
geom_segment(aes(x = 4 + 0.24, xend = 4 + 0.24, y = 6.2, yend = 5.9), color = "black") +
geom_segment(aes(x = 5 - 0.24, xend = 5 + 0.24, y = 7.5, yend = 7.5), color = "black") +
annotate("text", x = 5, y = 7.85, label = "p = 0.000", size = 3.2) +
geom_segment(aes(x = 5 - 0.24, xend = 5 - 0.24, y = 7.5, yend = 7.2), color = "black") +
geom_segment(aes(x = 5 + 0.24, xend = 5 + 0.24, y = 7.5, yend = 7.2), color = "black")
df_long_0915_mess <- bind_rows(mutate(mean_B5A_0915, SD = sd_B5A_0915$sd_B5A, Variable = "B5A"),mutate(mean_B6C_0915, SD = sd_B6C_0915$sd_B6C, Variable = "B6C"), mutate(mean_C2D_0915, SD = sd_C2D_0915$sd_C2D, Variable = "C2D"),mutate(mean_C2E_0915, SD = sd_C2E_0915$sd_C2E, Variable = "C2E"), mutate(mean_G41A_0915, SD = sd_G41A_0915$sd_G41A, Variable = "G41A")) %>% gather(key = "Measure", value = "Average", average_B5A, average_B6C, average_C2D, average_C2E, average_G41A)
df_long_0915 <- df_long_0915_mess %>% filter(!is.na(Average), !is.na(SD)) %>% filter(Average >= 0 & Average <= 7)
year_colors_0915 <- c("2009" = "#990000", "2015" = "#0A2240")
knitr::kable(df_long_0915, align = "ccccc")
| year | SD | Variable | Measure | Average |
|---|---|---|---|---|
| 2009 | 1.2117796 | B5A | average_B5A | 3.443359 |
| 2015 | 0.9194487 | B5A | average_B5A | 4.503906 |
| 2009 | 1.2650962 | B6C | average_B6C | 5.485437 |
| 2015 | 1.2547127 | B6C | average_B6C | 5.396116 |
| 2009 | 1.9307493 | C2D | average_C2D | 3.735922 |
| 2015 | 1.8594813 | C2D | average_C2D | 3.417476 |
| 2009 | 1.9444478 | C2E | average_C2E | 3.634952 |
| 2015 | 1.7794978 | C2E | average_C2E | 3.166990 |
| 2009 | 1.7032629 | G41A | average_G41A | 5.130350 |
| 2015 | 1.9306797 | G41A | average_G41A | 4.476654 |
ggplot(df_long_0915, aes(x = Variable, y = Average, fill = as.factor(year), group = year)) + geom_bar(stat = "identity", position = position_dodge(width = 0.8), color = "black", width = 0.5) + geom_errorbar(aes(ymin = Average - SD, ymax = Average + SD), position = position_dodge(width = 0.8), width = 0.25, colour = "#000000", size = 1) + scale_fill_manual(values = year_colors_0915) + labs(title = "2009 vs 2015 (within person)", x = "Variables", y = "Mean Value", fill = "Year") + theme_minimal() + theme(axis.text.x = element_text(angle = 0, hjust = 0.5, vjust = 0.5), axis.ticks.length = unit(0.3, "cm")) + theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank(),plot.title = element_text(size = 16, face = "bold"),axis.title.x = element_text(vjust = -2)) + scale_x_discrete(labels = c("B5A" = "B5A: \n Responsibility \n for Self", "B6C" = "B6C:\n Money Management \n Skills", "C2D" = "C2D:\n Worry about \n Expenses", "C2E" = "C2E:\n Worry about \n Future Job", "G41A" = "G41A:\n Importance of \n Job Status")) + scale_y_continuous(breaks = seq(1, 7, by = 1), expand = c(0, 0)) + coord_cartesian(ylim = c(1, 9)) +
geom_segment(aes(x = 1 - 0.24, xend = 1 + 0.24, y = 6, yend = 6), color = "black") +
annotate("text", x = 1, y = 6.33, label = "p = 0.000", size = 3.2) +
geom_segment(aes(x = 1 - 0.24, xend = 1 - 0.24, y = 6, yend = 5.7), color = "black") +
geom_segment(aes(x = 1 + 0.24, xend = 1 + 0.24, y = 6, yend = 5.7), color = "black") +
geom_segment(aes(x = 3 - 0.24, xend = 3 + 0.24, y = 6.4, yend = 6.4), color = "black") +
annotate("text", x = 3, y = 6.75, label = "p = 0.001", size = 3.2) +
geom_segment(aes(x = 3 - 0.24, xend = 3 - 0.24, y = 6.4, yend = 6.1), color = "black") +
geom_segment(aes(x = 3 + 0.24, xend = 3 + 0.24, y = 6.4, yend = 6.1), color = "black") +
geom_segment(aes(x = 4 - 0.24, xend = 4 + 0.24, y = 6.2, yend = 6.2), color = "black") +
annotate("text", x = 4, y = 6.55, label = "p = 0.000", size = 3.2) +
geom_segment(aes(x = 4 - 0.24, xend = 4 - 0.24, y = 6.2, yend = 5.9), color = "black") +
geom_segment(aes(x = 4 + 0.24, xend = 4 + 0.24, y = 6.2, yend = 5.9), color = "black") +
geom_segment(aes(x = 5 - 0.24, xend = 5 + 0.24, y = 7.5, yend = 7.5), color = "black") +
annotate("text", x = 5, y = 7.85, label = "p = 0.000", size = 3.2) +
geom_segment(aes(x = 5 - 0.24, xend = 5 - 0.24, y = 7.5, yend = 7.2), color = "black") +
geom_segment(aes(x = 5 + 0.24, xend = 5 + 0.24, y = 7.5, yend = 7.2), color = "black")