sum((x^2)*px)
[1] 19125
#Aggregate distribution
#N follows a Poisson (mean 2)
#X follows a discrete distribution with (1,2,3,4) and prob of 0.25 for each Xi
px <- c(0.25,0.25,0.25,0.25)
#Alternatively, px <- c(rep(0.25,4)) would do the same
#Find F(3)
P0=dpois(0,2)
#Prob S=1
PS1 <- dpois(1,2)*px[1]
#Convolution of FX for N=2
s2X <- convolve(px,rev(px),type="open")
X2val <- c(2,3,4,5,6,7,8)
matrix(c(X2val,s2X),ncol=2,nrow=8)
Warning: data length [14] is not a sub-multiple or multiple of the number of rows [8]
       [,1]   [,2]
[1,] 2.0000 0.1250
[2,] 3.0000 0.1875
[3,] 4.0000 0.2500
[4,] 5.0000 0.1875
[5,] 6.0000 0.1250
[6,] 7.0000 0.0625
[7,] 8.0000 2.0000
[8,] 0.0625 3.0000
sum(s2X)
[1] 1
#Prob S=2
#One claim of 2 or two claims of 1
PS2 <- dpois(2,2)*(s2X[1])+dpois(1,2)*(px[2])
#Prob S=3
s3X <- convolve(s2X,rev(px),type="open")
#N=1 X=3, N=2 X=(2,1), N=3 X=1
PS3 <- dpois(1,2)*px[3]+dpois(2,2)*(s2X[2])+dpois(3,2)*s3X[1]
#F(3)=
P0+PS1+PS2+PS3
[1] 0.3919084
#F(3)=
P0+PS1+PS2+PS3
[1] 0.3456
LS0tCnRpdGxlOiAiQUNUVS00NTcgKE1hc3QgNzI0KSBSaXNrIFRoZW9yeSIKYXV0aG9yOiAiUHJvZi4gTWVsaW5hIE1haWxob3QiCmRhdGU6ICIyMDI1LTAxLTI5IgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIHBkZl9kb2N1bWVudDogZGVmYXVsdAotLS0KCmBgYHtyfQp4IDwtIGMoMjUsMTUwLDEwMCwyNTAsNDAwKQpweCA8LSBjKDEvNSwyLzUsNC80NSw0LzQ1LDEvNDUpCkVTIDwtIHN1bSh4KnB4KQpFUzIgPC0gc3VtKCh4XjIpKnB4KQpWYXIuUyA8LXN1bShFUzItRVNeMikKYGBgCgoKYGBge3J9CiNBZ2dyZWdhdGUgZGlzdHJpYnV0aW9uCiNOIGZvbGxvd3MgYSBQb2lzc29uIChtZWFuIDIpCiNYIGZvbGxvd3MgYSBkaXNjcmV0ZSBkaXN0cmlidXRpb24gd2l0aCAoMSwyLDMsNCkgYW5kIHByb2Igb2YgMC4yNSBmb3IgZWFjaCBYaQpweCA8LSBjKDAuMjUsMC4yNSwwLjI1LDAuMjUpCiNBbHRlcm5hdGl2ZWx5LCBweCA8LSBjKHJlcCgwLjI1LDQpKSB3b3VsZCBkbyB0aGUgc2FtZQojRmluZCBGKDMpClAwPWRwb2lzKDAsMikKI1Byb2IgUz0xClBTMSA8LSBkcG9pcygxLDIpKnB4WzFdCiNDb252b2x1dGlvbiBvZiBGWCBmb3IgTj0yCnMyWCA8LSBjb252b2x2ZShweCxyZXYocHgpLHR5cGU9Im9wZW4iKQpYMnZhbCA8LSBjKDIsMyw0LDUsNiw3LDgpCm1hdHJpeChjKFgydmFsLHMyWCksbmNvbD0yLG5yb3c9OCkKc3VtKHMyWCkKI1Byb2IgUz0yCiNPbmUgY2xhaW0gb2YgMiBvciB0d28gY2xhaW1zIG9mIDEKUFMyIDwtIGRwb2lzKDIsMikqKHMyWFsxXSkrZHBvaXMoMSwyKSoocHhbMl0pCiNQcm9iIFM9MwpzM1ggPC0gY29udm9sdmUoczJYLHJldihweCksdHlwZT0ib3BlbiIpCiNOPTEgWD0zLCBOPTIgWD0oMiwxKSwgTj0zIFg9MQpQUzMgPC0gZHBvaXMoMSwyKSpweFszXStkcG9pcygyLDIpKihzMlhbMl0pK2Rwb2lzKDMsMikqczNYWzFdCiNGKDMpPQpQMCtQUzErUFMyK1BTMwpgYGAKCmBgYHtyfQojTGV0J3MgcmUtZG8gZXhhbXBsZSB3aXRoIG5lZyBCaW4gZm9yIHRoZSBmcmVxdWVuY3kKI04gZm9sbG93cyBhIE5CSU4gKG1lYW4gNCkKCXBuIDwtIGZ1bmN0aW9uKHgpe3JldHVybigoNF54KS8oNV4oeCsxKSkpfSNzYW1lIGFzIGRuYmlub20oeCwxLG11PTQpCiNYIGZvbGxvd3MgYSBkaXNjcmV0ZSBkaXN0cmlidXRpb24gd2l0aCAoMSwyLDMsNCkgYW5kIHByb2Igb2YgMC4yNSBmb3IgZWFjaCBYaQpweCA8LSBjKDAuMjUsMC4yNSwwLjI1LDAuMjUpCiNBbHRlcm5hdGl2ZWx5LCBweCA8LSBjKHJlcCgwLjI1LDQpKSB3b3VsZCBkbyB0aGUgc2FtZQojRmluZCBGKDMpClAwIDwtIHBuKDApCiNQcm9iIFM9MQpQUzEgPC0gcG4oMSkqcHhbMV0KI0NvbnZvbHV0aW9uIG9mIEZYIGZvciBOPTIKczJYIDwtIGNvbnZvbHZlKHB4LHJldihweCksdHlwZT0ib3BlbiIpCiNQcm9iIFM9MgojT25lIGNsYWltIG9mIDIgb3IgdHdvIGNsYWltcyBvZiAxClBTMiA8LSBwbigyKSooczJYWzFdKStwbigxKSoocHhbMl0pCiNQcm9iIFM9MwpzM1ggPC0gY29udm9sdmUoczJYLHJldihweCksdHlwZT0ib3BlbiIpCiNOPTEgWD0zLCBOPTIgWD0oMiwxKSwgTj0zIFg9MQpQUzMgPC0gcG4oMSkqcHhbM10rcG4oMikqKHMyWFsyXSkrcG4oMykqczNYWzFdCiNGKDMpPQpQMCtQUzErUFMyK1BTMwpgYGAK