This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
Note: this analysis was performed using the open source software R and Rstudio.
library(readr)
ad_sales <- read_csv('https://raw.githubusercontent.com/utjimmyx/regression/master/advertising.csv')
## New names:
## Rows: 200 Columns: 6
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (6): ...1, X1, TV, radio, newspaper, sales
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
plot(sales ~ TV, data = ad_sales)
plot(sales ~ radio, data = ad_sales)
This is the end of part 1 for my exploratory analysis.
library(ggplot2)
head(ad_sales)
## # A tibble: 6 × 6
## ...1 X1 TV radio newspaper sales
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 230. 37.8 69.2 22.1
## 2 2 2 44.5 39.3 45.1 10.4
## 3 3 3 17.2 45.9 69.3 9.3
## 4 4 4 152. 41.3 58.5 18.5
## 5 5 5 181. 10.8 58.4 12.9
## 6 6 6 8.7 48.9 75 7.2
ggplot(data = ad_sales, aes(x = TV)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
This is the end of part 2 for my exploratory analysis.
There is a positive relationship between x and y. As radio increases, so does sales. # Question 2 A coefficient is the relationship betweeen independent and dependent variable. There is a positive relationship between the two variables. As TV increases, sales also increases. # Question 3 Is there a relationship the price and the product? There are some limitations such as a linear relationship # Question 4 I dont think you can plot the relationship between radio advertising and sales. # Question 5 library(ggplot2)
123