mu <- 183.8
sigma <- 10.5
x <- seq(from = mu - 3*sigma,
to = mu + 3*sigma,
length.out = 9000)
pdf <- dnorm(x = x,
mean = mu,
sd = sigma)
plot(x = x,
y = pdf,
type = 'l',
xlab = 'Density',
ylab = 'Height',
main = 'Normal Distribution of the Heights of Dutch Men')
n <- 100
p <- 2/38
x <- 0:20
probabilities <- dbinom(x = x,
size = n,
prob = p)
barplot(height = probabilities,
names.arg = x,
col = "#79c36a",
main = "Binomial Distribution of Roulette",
xlab = "Number of Times Landing on Green",
ylab = "Probability")
n <- 10000
lambda <- 4.44
hist(rpois(n, lambda),
main = "Poisson Distributions of Concussions in High School Football",
xlab = "Number of Concussions",
ylab = "Frequency")
Poisson:
n <- 40000 # total procedures
p <- .5 # probability of death from surgery
lambda <- (n * p) # mean
poisson <- rpois(10000, lambda)
hist(poisson)
Binomial:
binomial <- rbinom(10000, size = n, prob = p)
hist(binomial)