Lecture 2: Tools and Technologies in BI

Illya Mowerman, Ph.D.

Introduction

Introduction to R

Introduction to R-Studio

Introduction to R/Shiny

Python-Based Alternatives to Shiny

R and Python Integration for BI Applications

Introduction to Tableau

Introduction to Power BI

Introduction to Python

Comparison of BI Tools

Feature R Tableau Power_BI Python
Coding Required Yes No No Yes
Best For Statistical Analysis Data Visualization Business Analytics General Data Science
Learning Curve Moderate Easy Easy Moderate
Enterprise Use Medium High High High
Open Source Yes No No Yes

Comparison of R and Python for BI

Feature R Python
IDEs R-Studio Jupyter, PyCharm, VS Code
Web Apps Shiny Dash, Streamlit, Panel
Data Analysis Tidyverse Pandas, NumPy, Matplotlib
Machine Learning Caret, mlr3, xgboost Scikit-learn, TensorFlow, PyTorch

Comparison of Web App Frameworks

Feature Shiny_R Dash_Python Streamlit_Python Panel_Python
Ease of Use Moderate Moderate Easy Moderate
Interactivity High High High High
UI Customization Moderate High Low High
Best For Data Science Apps/BI Dashboards BI Dashboards Quick Prototyping Data Science Apps
Learning Curve Moderate Moderate Low Moderate
Open Source Yes Yes Yes Yes

Introduction to Code Repositories

Introduction to Docker

Introduction to Jenkins

Summary

Q&A