Spring 2025
colnames(ChickWeight)
## [1] "weight" "Time" "Chick" "Diet"
subset(ChickWeight, weight > 330, select=c(weight,Time))
## weight Time ## 232 331 21 ## 388 341 21 ## 398 332 18 ## 399 361 20 ## 400 373 21
head(transform(ChickWeight, weight=-weight))
## weight Time Chick Diet ## 1 -42 0 1 1 ## 2 -51 2 1 1 ## 3 -59 4 1 1 ## 4 -64 6 1 1 ## 5 -76 8 1 1 ## 6 -93 10 1 1
head(reorder(ChickWeight$Time, ChickWeight$weight))
## [1] 0 2 4 6 8 10 ## Levels: 0 2 4 6 8 10 12 14 16 18 20 21
head(transform(ChickWeight, reorder(Time, weight)))
## weight Time Chick Diet ## 1 42 0 1 1 ## 2 51 2 1 1 ## 3 59 4 1 1 ## 4 64 6 1 1 ## 5 76 8 1 1 ## 6 93 10 1 1
library(dplyr,quietly=TRUE, warn.conflicts=FALSE) head(arrange(ChickWeight, Diet, Chick, Time, weight))
## weight Time Chick Diet ## 1 39 0 18 1 ## 2 35 2 18 1 ## 3 41 0 16 1 ## 4 45 2 16 1 ## 5 49 4 16 1 ## 6 51 6 16 1
ChickWeight[ ChickWeight$Chick==1 & ChickWeight$Time > 10, ]
## weight Time Chick Diet ## 7 106 12 1 1 ## 8 125 14 1 1 ## 9 149 16 1 1 ## 10 171 18 1 1 ## 11 199 20 1 1 ## 12 205 21 1 1
filter(ChickWeight, Chick==1, Time > 10)
## weight Time Chick Diet ## 1 106 12 1 1 ## 2 125 14 1 1 ## 3 149 16 1 1 ## 4 171 18 1 1 ## 5 199 20 1 1 ## 6 205 21 1 1
ChickWeight[ c(3,5,7), 1:3 ]
## weight Time Chick ## 3 59 4 1 ## 5 76 8 1 ## 7 106 12 1
subset(aggregate(state.x77,list(Region = state.region), mean), select=c(Region, Population, Income, Illiteracy))
## Region Population Income Illiteracy ## 1 Northeast 5495.111 4570.222 1.000000 ## 2 South 4208.125 4011.938 1.737500 ## 3 North Central 4803.000 4611.083 0.700000 ## 4 West 2915.308 4702.615 1.023077
A = data.frame(Var1 = c(1,2,3), Var2=factor(c("a","b","c"))) B = data.frame(Var3=c(-3, 2.7, 52)) merge(A,B)
## Var1 Var2 Var3 ## 1 1 a -3.0 ## 2 2 b -3.0 ## 3 3 c -3.0 ## 4 1 a 2.7 ## 5 2 b 2.7 ## 6 3 c 2.7 ## 7 1 a 52.0 ## 8 2 b 52.0 ## 9 3 c 52.0
A = data.frame(Var1 = c(1,2,3), Var2=factor(c("a","b","c"))) B = data.frame(Var2=factor(c("a","a","b")), Var3=c(-3, 2.7, 52)) merge(A,B)
## Var2 Var1 Var3 ## 1 a 1 -3.0 ## 2 a 1 2.7 ## 3 b 2 52.0
A = data.frame(Var1=c(1,2,3), Var2=factor(c("a","b","c"))) B = data.frame(Var1=c(9,10), Var2=factor(c("b","c"))) rbind(A,B)
## Var1 Var2 ## 1 1 a ## 2 2 b ## 3 3 c ## 4 9 b ## 5 10 c
merge(df1, df2, by="CustomerId")
merge(x=df1, y=df2, by="CustomerId", all=T)
merge(x=df1, y=df2, by="CustomerId", all.x=T)
merge(x=df1, y=df2, by="CustomerId", all.y=T)
merge(x=df1, y=df2, by=NULL)
mydata <- ChickWeight mydata$NewColumn <- mydata$weight^2 head(mydata, n=5)
## weight Time Chick Diet NewColumn ## 1 42 0 1 1 1764 ## 2 51 2 1 1 2601 ## 3 59 4 1 1 3481 ## 4 64 6 1 1 4096 ## 5 76 8 1 1 5776
mydata <- ChickWeight mutate(mydata, NewColumn = weight^2, SecNewCol = NewColumn / 2)
## weight Time Chick Diet NewColumn SecNewCol ## 1 42 0 1 1 1764 882.0 ## 2 51 2 1 1 2601 1300.5 ## 3 59 4 1 1 3481 1740.5 ## 4 64 6 1 1 4096 2048.0 ## 5 76 8 1 1 5776 2888.0 ## 6 93 10 1 1 8649 4324.5 ## 7 106 12 1 1 11236 5618.0 ## 8 125 14 1 1 15625 7812.5 ## 9 149 16 1 1 22201 11100.5 ## 10 171 18 1 1 29241 14620.5 ## 11 199 20 1 1 39601 19800.5 ## 12 205 21 1 1 42025 21012.5 ## 13 40 0 2 1 1600 800.0 ## 14 49 2 2 1 2401 1200.5 ## 15 58 4 2 1 3364 1682.0 ## 16 72 6 2 1 5184 2592.0 ## 17 84 8 2 1 7056 3528.0 ## 18 103 10 2 1 10609 5304.5 ## 19 122 12 2 1 14884 7442.0 ## 20 138 14 2 1 19044 9522.0 ## 21 162 16 2 1 26244 13122.0 ## 22 187 18 2 1 34969 17484.5 ## 23 209 20 2 1 43681 21840.5 ## 24 215 21 2 1 46225 23112.5 ## 25 43 0 3 1 1849 924.5 ## 26 39 2 3 1 1521 760.5 ## 27 55 4 3 1 3025 1512.5 ## 28 67 6 3 1 4489 2244.5 ## 29 84 8 3 1 7056 3528.0 ## 30 99 10 3 1 9801 4900.5 ## 31 115 12 3 1 13225 6612.5 ## 32 138 14 3 1 19044 9522.0 ## 33 163 16 3 1 26569 13284.5 ## 34 187 18 3 1 34969 17484.5 ## 35 198 20 3 1 39204 19602.0 ## 36 202 21 3 1 40804 20402.0 ## 37 42 0 4 1 1764 882.0 ## 38 49 2 4 1 2401 1200.5 ## 39 56 4 4 1 3136 1568.0 ## 40 67 6 4 1 4489 2244.5 ## 41 74 8 4 1 5476 2738.0 ## 42 87 10 4 1 7569 3784.5 ## 43 102 12 4 1 10404 5202.0 ## 44 108 14 4 1 11664 5832.0 ## 45 136 16 4 1 18496 9248.0 ## 46 154 18 4 1 23716 11858.0 ## 47 160 20 4 1 25600 12800.0 ## 48 157 21 4 1 24649 12324.5 ## 49 41 0 5 1 1681 840.5 ## 50 42 2 5 1 1764 882.0 ## 51 48 4 5 1 2304 1152.0 ## 52 60 6 5 1 3600 1800.0 ## 53 79 8 5 1 6241 3120.5 ## 54 106 10 5 1 11236 5618.0 ## 55 141 12 5 1 19881 9940.5 ## 56 164 14 5 1 26896 13448.0 ## 57 197 16 5 1 38809 19404.5 ## 58 199 18 5 1 39601 19800.5 ## 59 220 20 5 1 48400 24200.0 ## 60 223 21 5 1 49729 24864.5 ## 61 41 0 6 1 1681 840.5 ## 62 49 2 6 1 2401 1200.5 ## 63 59 4 6 1 3481 1740.5 ## 64 74 6 6 1 5476 2738.0 ## 65 97 8 6 1 9409 4704.5 ## 66 124 10 6 1 15376 7688.0 ## 67 141 12 6 1 19881 9940.5 ## 68 148 14 6 1 21904 10952.0 ## 69 155 16 6 1 24025 12012.5 ## 70 160 18 6 1 25600 12800.0 ## 71 160 20 6 1 25600 12800.0 ## 72 157 21 6 1 24649 12324.5 ## 73 41 0 7 1 1681 840.5 ## 74 49 2 7 1 2401 1200.5 ## 75 57 4 7 1 3249 1624.5 ## 76 71 6 7 1 5041 2520.5 ## 77 89 8 7 1 7921 3960.5 ## 78 112 10 7 1 12544 6272.0 ## 79 146 12 7 1 21316 10658.0 ## 80 174 14 7 1 30276 15138.0 ## 81 218 16 7 1 47524 23762.0 ## 82 250 18 7 1 62500 31250.0 ## 83 288 20 7 1 82944 41472.0 ## 84 305 21 7 1 93025 46512.5 ## 85 42 0 8 1 1764 882.0 ## 86 50 2 8 1 2500 1250.0 ## 87 61 4 8 1 3721 1860.5 ## 88 71 6 8 1 5041 2520.5 ## 89 84 8 8 1 7056 3528.0 ## 90 93 10 8 1 8649 4324.5 ## 91 110 12 8 1 12100 6050.0 ## 92 116 14 8 1 13456 6728.0 ## 93 126 16 8 1 15876 7938.0 ## 94 134 18 8 1 17956 8978.0 ## 95 125 20 8 1 15625 7812.5 ## 96 42 0 9 1 1764 882.0 ## 97 51 2 9 1 2601 1300.5 ## 98 59 4 9 1 3481 1740.5 ## 99 68 6 9 1 4624 2312.0 ## 100 85 8 9 1 7225 3612.5 ## 101 96 10 9 1 9216 4608.0 ## 102 90 12 9 1 8100 4050.0 ## 103 92 14 9 1 8464 4232.0 ## 104 93 16 9 1 8649 4324.5 ## 105 100 18 9 1 10000 5000.0 ## 106 100 20 9 1 10000 5000.0 ## 107 98 21 9 1 9604 4802.0 ## 108 41 0 10 1 1681 840.5 ## 109 44 2 10 1 1936 968.0 ## 110 52 4 10 1 2704 1352.0 ## 111 63 6 10 1 3969 1984.5 ## 112 74 8 10 1 5476 2738.0 ## 113 81 10 10 1 6561 3280.5 ## 114 89 12 10 1 7921 3960.5 ## 115 96 14 10 1 9216 4608.0 ## 116 101 16 10 1 10201 5100.5 ## 117 112 18 10 1 12544 6272.0 ## 118 120 20 10 1 14400 7200.0 ## 119 124 21 10 1 15376 7688.0 ## 120 43 0 11 1 1849 924.5 ## 121 51 2 11 1 2601 1300.5 ## 122 63 4 11 1 3969 1984.5 ## 123 84 6 11 1 7056 3528.0 ## 124 112 8 11 1 12544 6272.0 ## 125 139 10 11 1 19321 9660.5 ## 126 168 12 11 1 28224 14112.0 ## 127 177 14 11 1 31329 15664.5 ## 128 182 16 11 1 33124 16562.0 ## 129 184 18 11 1 33856 16928.0 ## 130 181 20 11 1 32761 16380.5 ## 131 175 21 11 1 30625 15312.5 ## 132 41 0 12 1 1681 840.5 ## 133 49 2 12 1 2401 1200.5 ## 134 56 4 12 1 3136 1568.0 ## 135 62 6 12 1 3844 1922.0 ## 136 72 8 12 1 5184 2592.0 ## 137 88 10 12 1 7744 3872.0 ## 138 119 12 12 1 14161 7080.5 ## 139 135 14 12 1 18225 9112.5 ## 140 162 16 12 1 26244 13122.0 ## 141 185 18 12 1 34225 17112.5 ## 142 195 20 12 1 38025 19012.5 ## 143 205 21 12 1 42025 21012.5 ## 144 41 0 13 1 1681 840.5 ## 145 48 2 13 1 2304 1152.0 ## 146 53 4 13 1 2809 1404.5 ## 147 60 6 13 1 3600 1800.0 ## 148 65 8 13 1 4225 2112.5 ## 149 67 10 13 1 4489 2244.5 ## 150 71 12 13 1 5041 2520.5 ## 151 70 14 13 1 4900 2450.0 ## 152 71 16 13 1 5041 2520.5 ## 153 81 18 13 1 6561 3280.5 ## 154 91 20 13 1 8281 4140.5 ## 155 96 21 13 1 9216 4608.0 ## 156 41 0 14 1 1681 840.5 ## 157 49 2 14 1 2401 1200.5 ## 158 62 4 14 1 3844 1922.0 ## 159 79 6 14 1 6241 3120.5 ## 160 101 8 14 1 10201 5100.5 ## 161 128 10 14 1 16384 8192.0 ## 162 164 12 14 1 26896 13448.0 ## 163 192 14 14 1 36864 18432.0 ## 164 227 16 14 1 51529 25764.5 ## 165 248 18 14 1 61504 30752.0 ## 166 259 20 14 1 67081 33540.5 ## 167 266 21 14 1 70756 35378.0 ## 168 41 0 15 1 1681 840.5 ## 169 49 2 15 1 2401 1200.5 ## 170 56 4 15 1 3136 1568.0 ## 171 64 6 15 1 4096 2048.0 ## 172 68 8 15 1 4624 2312.0 ## 173 68 10 15 1 4624 2312.0 ## 174 67 12 15 1 4489 2244.5 ## 175 68 14 15 1 4624 2312.0 ## 176 41 0 16 1 1681 840.5 ## 177 45 2 16 1 2025 1012.5 ## 178 49 4 16 1 2401 1200.5 ## 179 51 6 16 1 2601 1300.5 ## 180 57 8 16 1 3249 1624.5 ## 181 51 10 16 1 2601 1300.5 ## 182 54 12 16 1 2916 1458.0 ## 183 42 0 17 1 1764 882.0 ## 184 51 2 17 1 2601 1300.5 ## 185 61 4 17 1 3721 1860.5 ## 186 72 6 17 1 5184 2592.0 ## 187 83 8 17 1 6889 3444.5 ## 188 89 10 17 1 7921 3960.5 ## 189 98 12 17 1 9604 4802.0 ## 190 103 14 17 1 10609 5304.5 ## 191 113 16 17 1 12769 6384.5 ## 192 123 18 17 1 15129 7564.5 ## 193 133 20 17 1 17689 8844.5 ## 194 142 21 17 1 20164 10082.0 ## 195 39 0 18 1 1521 760.5 ## 196 35 2 18 1 1225 612.5 ## 197 43 0 19 1 1849 924.5 ## 198 48 2 19 1 2304 1152.0 ## 199 55 4 19 1 3025 1512.5 ## 200 62 6 19 1 3844 1922.0 ## 201 65 8 19 1 4225 2112.5 ## 202 71 10 19 1 5041 2520.5 ## 203 82 12 19 1 6724 3362.0 ## 204 88 14 19 1 7744 3872.0 ## 205 106 16 19 1 11236 5618.0 ## 206 120 18 19 1 14400 7200.0 ## 207 144 20 19 1 20736 10368.0 ## 208 157 21 19 1 24649 12324.5 ## 209 41 0 20 1 1681 840.5 ## 210 47 2 20 1 2209 1104.5 ## 211 54 4 20 1 2916 1458.0 ## 212 58 6 20 1 3364 1682.0 ## 213 65 8 20 1 4225 2112.5 ## 214 73 10 20 1 5329 2664.5 ## 215 77 12 20 1 5929 2964.5 ## 216 89 14 20 1 7921 3960.5 ## 217 98 16 20 1 9604 4802.0 ## 218 107 18 20 1 11449 5724.5 ## 219 115 20 20 1 13225 6612.5 ## 220 117 21 20 1 13689 6844.5 ## 221 40 0 21 2 1600 800.0 ## 222 50 2 21 2 2500 1250.0 ## 223 62 4 21 2 3844 1922.0 ## 224 86 6 21 2 7396 3698.0 ## 225 125 8 21 2 15625 7812.5 ## 226 163 10 21 2 26569 13284.5 ## 227 217 12 21 2 47089 23544.5 ## 228 240 14 21 2 57600 28800.0 ## 229 275 16 21 2 75625 37812.5 ## 230 307 18 21 2 94249 47124.5 ## 231 318 20 21 2 101124 50562.0 ## 232 331 21 21 2 109561 54780.5 ## 233 41 0 22 2 1681 840.5 ## 234 55 2 22 2 3025 1512.5 ## 235 64 4 22 2 4096 2048.0 ## 236 77 6 22 2 5929 2964.5 ## 237 90 8 22 2 8100 4050.0 ## 238 95 10 22 2 9025 4512.5 ## 239 108 12 22 2 11664 5832.0 ## 240 111 14 22 2 12321 6160.5 ## 241 131 16 22 2 17161 8580.5 ## 242 148 18 22 2 21904 10952.0 ## 243 164 20 22 2 26896 13448.0 ## 244 167 21 22 2 27889 13944.5 ## 245 43 0 23 2 1849 924.5 ## 246 52 2 23 2 2704 1352.0 ## 247 61 4 23 2 3721 1860.5 ## 248 73 6 23 2 5329 2664.5 ## 249 90 8 23 2 8100 4050.0 ## 250 103 10 23 2 10609 5304.5 ## 251 127 12 23 2 16129 8064.5 ## 252 135 14 23 2 18225 9112.5 ## 253 145 16 23 2 21025 10512.5 ## 254 163 18 23 2 26569 13284.5 ## 255 170 20 23 2 28900 14450.0 ## 256 175 21 23 2 30625 15312.5 ## 257 42 0 24 2 1764 882.0 ## 258 52 2 24 2 2704 1352.0 ## 259 58 4 24 2 3364 1682.0 ## 260 74 6 24 2 5476 2738.0 ## 261 66 8 24 2 4356 2178.0 ## 262 68 10 24 2 4624 2312.0 ## 263 70 12 24 2 4900 2450.0 ## 264 71 14 24 2 5041 2520.5 ## 265 72 16 24 2 5184 2592.0 ## 266 72 18 24 2 5184 2592.0 ## 267 76 20 24 2 5776 2888.0 ## 268 74 21 24 2 5476 2738.0 ## 269 40 0 25 2 1600 800.0 ## 270 49 2 25 2 2401 1200.5 ## 271 62 4 25 2 3844 1922.0 ## 272 78 6 25 2 6084 3042.0 ## 273 102 8 25 2 10404 5202.0 ## 274 124 10 25 2 15376 7688.0 ## 275 146 12 25 2 21316 10658.0 ## 276 164 14 25 2 26896 13448.0 ## 277 197 16 25 2 38809 19404.5 ## 278 231 18 25 2 53361 26680.5 ## 279 259 20 25 2 67081 33540.5 ## 280 265 21 25 2 70225 35112.5 ## 281 42 0 26 2 1764 882.0 ## 282 48 2 26 2 2304 1152.0 ## 283 57 4 26 2 3249 1624.5 ## 284 74 6 26 2 5476 2738.0 ## 285 93 8 26 2 8649 4324.5 ## 286 114 10 26 2 12996 6498.0 ## 287 136 12 26 2 18496 9248.0 ## 288 147 14 26 2 21609 10804.5 ## 289 169 16 26 2 28561 14280.5 ## 290 205 18 26 2 42025 21012.5 ## 291 236 20 26 2 55696 27848.0 ## 292 251 21 26 2 63001 31500.5 ## 293 39 0 27 2 1521 760.5 ## 294 46 2 27 2 2116 1058.0 ## 295 58 4 27 2 3364 1682.0 ## 296 73 6 27 2 5329 2664.5 ## 297 87 8 27 2 7569 3784.5 ## 298 100 10 27 2 10000 5000.0 ## 299 115 12 27 2 13225 6612.5 ## 300 123 14 27 2 15129 7564.5 ## 301 144 16 27 2 20736 10368.0 ## 302 163 18 27 2 26569 13284.5 ## 303 185 20 27 2 34225 17112.5 ## 304 192 21 27 2 36864 18432.0 ## 305 39 0 28 2 1521 760.5 ## 306 46 2 28 2 2116 1058.0 ## 307 58 4 28 2 3364 1682.0 ## 308 73 6 28 2 5329 2664.5 ## 309 92 8 28 2 8464 4232.0 ## 310 114 10 28 2 12996 6498.0 ## 311 145 12 28 2 21025 10512.5 ## 312 156 14 28 2 24336 12168.0 ## 313 184 16 28 2 33856 16928.0 ## 314 207 18 28 2 42849 21424.5 ## 315 212 20 28 2 44944 22472.0 ## 316 233 21 28 2 54289 27144.5 ## 317 39 0 29 2 1521 760.5 ## 318 48 2 29 2 2304 1152.0 ## 319 59 4 29 2 3481 1740.5 ## 320 74 6 29 2 5476 2738.0 ## 321 87 8 29 2 7569 3784.5 ## 322 106 10 29 2 11236 5618.0 ## 323 134 12 29 2 17956 8978.0 ## 324 150 14 29 2 22500 11250.0 ## 325 187 16 29 2 34969 17484.5 ## 326 230 18 29 2 52900 26450.0 ## 327 279 20 29 2 77841 38920.5 ## 328 309 21 29 2 95481 47740.5 ## 329 42 0 30 2 1764 882.0 ## 330 48 2 30 2 2304 1152.0 ## 331 59 4 30 2 3481 1740.5 ## 332 72 6 30 2 5184 2592.0 ## 333 85 8 30 2 7225 3612.5 ## 334 98 10 30 2 9604 4802.0 ## 335 115 12 30 2 13225 6612.5 ## 336 122 14 30 2 14884 7442.0 ## 337 143 16 30 2 20449 10224.5 ## 338 151 18 30 2 22801 11400.5 ## 339 157 20 30 2 24649 12324.5 ## 340 150 21 30 2 22500 11250.0 ## 341 42 0 31 3 1764 882.0 ## 342 53 2 31 3 2809 1404.5 ## 343 62 4 31 3 3844 1922.0 ## 344 73 6 31 3 5329 2664.5 ## 345 85 8 31 3 7225 3612.5 ## 346 102 10 31 3 10404 5202.0 ## 347 123 12 31 3 15129 7564.5 ## 348 138 14 31 3 19044 9522.0 ## 349 170 16 31 3 28900 14450.0 ## 350 204 18 31 3 41616 20808.0 ## 351 235 20 31 3 55225 27612.5 ## 352 256 21 31 3 65536 32768.0 ## 353 41 0 32 3 1681 840.5 ## 354 49 2 32 3 2401 1200.5 ## 355 65 4 32 3 4225 2112.5 ## 356 82 6 32 3 6724 3362.0 ## 357 107 8 32 3 11449 5724.5 ## 358 129 10 32 3 16641 8320.5 ## 359 159 12 32 3 25281 12640.5 ## 360 179 14 32 3 32041 16020.5 ## 361 221 16 32 3 48841 24420.5 ## 362 263 18 32 3 69169 34584.5 ## 363 291 20 32 3 84681 42340.5 ## 364 305 21 32 3 93025 46512.5 ## 365 39 0 33 3 1521 760.5 ## 366 50 2 33 3 2500 1250.0 ## 367 63 4 33 3 3969 1984.5 ## 368 77 6 33 3 5929 2964.5 ## 369 96 8 33 3 9216 4608.0 ## 370 111 10 33 3 12321 6160.5 ## 371 137 12 33 3 18769 9384.5 ## 372 144 14 33 3 20736 10368.0 ## 373 151 16 33 3 22801 11400.5 ## 374 146 18 33 3 21316 10658.0 ## 375 156 20 33 3 24336 12168.0 ## 376 147 21 33 3 21609 10804.5 ## 377 41 0 34 3 1681 840.5 ## 378 49 2 34 3 2401 1200.5 ## 379 63 4 34 3 3969 1984.5 ## 380 85 6 34 3 7225 3612.5 ## 381 107 8 34 3 11449 5724.5 ## 382 134 10 34 3 17956 8978.0 ## 383 164 12 34 3 26896 13448.0 ## 384 186 14 34 3 34596 17298.0 ## 385 235 16 34 3 55225 27612.5 ## 386 294 18 34 3 86436 43218.0 ## 387 327 20 34 3 106929 53464.5 ## 388 341 21 34 3 116281 58140.5 ## 389 41 0 35 3 1681 840.5 ## 390 53 2 35 3 2809 1404.5 ## 391 64 4 35 3 4096 2048.0 ## 392 87 6 35 3 7569 3784.5 ## 393 123 8 35 3 15129 7564.5 ## 394 158 10 35 3 24964 12482.0 ## 395 201 12 35 3 40401 20200.5 ## 396 238 14 35 3 56644 28322.0 ## 397 287 16 35 3 82369 41184.5 ## 398 332 18 35 3 110224 55112.0 ## 399 361 20 35 3 130321 65160.5 ## 400 373 21 35 3 139129 69564.5 ## 401 39 0 36 3 1521 760.5 ## 402 48 2 36 3 2304 1152.0 ## 403 61 4 36 3 3721 1860.5 ## 404 76 6 36 3 5776 2888.0 ## 405 98 8 36 3 9604 4802.0 ## 406 116 10 36 3 13456 6728.0 ## 407 145 12 36 3 21025 10512.5 ## 408 166 14 36 3 27556 13778.0 ## 409 198 16 36 3 39204 19602.0 ## 410 227 18 36 3 51529 25764.5 ## 411 225 20 36 3 50625 25312.5 ## 412 220 21 36 3 48400 24200.0 ## 413 41 0 37 3 1681 840.5 ## 414 48 2 37 3 2304 1152.0 ## 415 56 4 37 3 3136 1568.0 ## 416 68 6 37 3 4624 2312.0 ## 417 80 8 37 3 6400 3200.0 ## 418 83 10 37 3 6889 3444.5 ## 419 103 12 37 3 10609 5304.5 ## 420 112 14 37 3 12544 6272.0 ## 421 135 16 37 3 18225 9112.5 ## 422 157 18 37 3 24649 12324.5 ## 423 169 20 37 3 28561 14280.5 ## 424 178 21 37 3 31684 15842.0 ## 425 41 0 38 3 1681 840.5 ## 426 49 2 38 3 2401 1200.5 ## 427 61 4 38 3 3721 1860.5 ## 428 74 6 38 3 5476 2738.0 ## 429 98 8 38 3 9604 4802.0 ## 430 109 10 38 3 11881 5940.5 ## 431 128 12 38 3 16384 8192.0 ## 432 154 14 38 3 23716 11858.0 ## 433 192 16 38 3 36864 18432.0 ## 434 232 18 38 3 53824 26912.0 ## 435 280 20 38 3 78400 39200.0 ## 436 290 21 38 3 84100 42050.0 ## 437 42 0 39 3 1764 882.0 ## 438 50 2 39 3 2500 1250.0 ## 439 61 4 39 3 3721 1860.5 ## 440 78 6 39 3 6084 3042.0 ## 441 89 8 39 3 7921 3960.5 ## 442 109 10 39 3 11881 5940.5 ## 443 130 12 39 3 16900 8450.0 ## 444 146 14 39 3 21316 10658.0 ## 445 170 16 39 3 28900 14450.0 ## 446 214 18 39 3 45796 22898.0 ## 447 250 20 39 3 62500 31250.0 ## 448 272 21 39 3 73984 36992.0 ## 449 41 0 40 3 1681 840.5 ## 450 55 2 40 3 3025 1512.5 ## 451 66 4 40 3 4356 2178.0 ## 452 79 6 40 3 6241 3120.5 ## 453 101 8 40 3 10201 5100.5 ## 454 120 10 40 3 14400 7200.0 ## 455 154 12 40 3 23716 11858.0 ## 456 182 14 40 3 33124 16562.0 ## 457 215 16 40 3 46225 23112.5 ## 458 262 18 40 3 68644 34322.0 ## 459 295 20 40 3 87025 43512.5 ## 460 321 21 40 3 103041 51520.5 ## 461 42 0 41 4 1764 882.0 ## 462 51 2 41 4 2601 1300.5 ## 463 66 4 41 4 4356 2178.0 ## 464 85 6 41 4 7225 3612.5 ## 465 103 8 41 4 10609 5304.5 ## 466 124 10 41 4 15376 7688.0 ## 467 155 12 41 4 24025 12012.5 ## 468 153 14 41 4 23409 11704.5 ## 469 175 16 41 4 30625 15312.5 ## 470 184 18 41 4 33856 16928.0 ## 471 199 20 41 4 39601 19800.5 ## 472 204 21 41 4 41616 20808.0 ## 473 42 0 42 4 1764 882.0 ## 474 49 2 42 4 2401 1200.5 ## 475 63 4 42 4 3969 1984.5 ## 476 84 6 42 4 7056 3528.0 ## 477 103 8 42 4 10609 5304.5 ## 478 126 10 42 4 15876 7938.0 ## 479 160 12 42 4 25600 12800.0 ## 480 174 14 42 4 30276 15138.0 ## 481 204 16 42 4 41616 20808.0 ## 482 234 18 42 4 54756 27378.0 ## 483 269 20 42 4 72361 36180.5 ## 484 281 21 42 4 78961 39480.5 ## 485 42 0 43 4 1764 882.0 ## 486 55 2 43 4 3025 1512.5 ## 487 69 4 43 4 4761 2380.5 ## 488 96 6 43 4 9216 4608.0 ## 489 131 8 43 4 17161 8580.5 ## 490 157 10 43 4 24649 12324.5 ## 491 184 12 43 4 33856 16928.0 ## 492 188 14 43 4 35344 17672.0 ## 493 197 16 43 4 38809 19404.5 ## 494 198 18 43 4 39204 19602.0 ## 495 199 20 43 4 39601 19800.5 ## 496 200 21 43 4 40000 20000.0 ## 497 42 0 44 4 1764 882.0 ## 498 51 2 44 4 2601 1300.5 ## 499 65 4 44 4 4225 2112.5 ## 500 86 6 44 4 7396 3698.0 ## 501 103 8 44 4 10609 5304.5 ## 502 118 10 44 4 13924 6962.0 ## 503 127 12 44 4 16129 8064.5 ## 504 138 14 44 4 19044 9522.0 ## 505 145 16 44 4 21025 10512.5 ## 506 146 18 44 4 21316 10658.0 ## 507 41 0 45 4 1681 840.5 ## 508 50 2 45 4 2500 1250.0 ## 509 61 4 45 4 3721 1860.5 ## 510 78 6 45 4 6084 3042.0 ## 511 98 8 45 4 9604 4802.0 ## 512 117 10 45 4 13689 6844.5 ## 513 135 12 45 4 18225 9112.5 ## 514 141 14 45 4 19881 9940.5 ## 515 147 16 45 4 21609 10804.5 ## 516 174 18 45 4 30276 15138.0 ## 517 197 20 45 4 38809 19404.5 ## 518 196 21 45 4 38416 19208.0 ## 519 40 0 46 4 1600 800.0 ## 520 52 2 46 4 2704 1352.0 ## 521 62 4 46 4 3844 1922.0 ## 522 82 6 46 4 6724 3362.0 ## 523 101 8 46 4 10201 5100.5 ## 524 120 10 46 4 14400 7200.0 ## 525 144 12 46 4 20736 10368.0 ## 526 156 14 46 4 24336 12168.0 ## 527 173 16 46 4 29929 14964.5 ## 528 210 18 46 4 44100 22050.0 ## 529 231 20 46 4 53361 26680.5 ## 530 238 21 46 4 56644 28322.0 ## 531 41 0 47 4 1681 840.5 ## 532 53 2 47 4 2809 1404.5 ## 533 66 4 47 4 4356 2178.0 ## 534 79 6 47 4 6241 3120.5 ## 535 100 8 47 4 10000 5000.0 ## 536 123 10 47 4 15129 7564.5 ## 537 148 12 47 4 21904 10952.0 ## 538 157 14 47 4 24649 12324.5 ## 539 168 16 47 4 28224 14112.0 ## 540 185 18 47 4 34225 17112.5 ## 541 210 20 47 4 44100 22050.0 ## 542 205 21 47 4 42025 21012.5 ## 543 39 0 48 4 1521 760.5 ## 544 50 2 48 4 2500 1250.0 ## 545 62 4 48 4 3844 1922.0 ## 546 80 6 48 4 6400 3200.0 ## 547 104 8 48 4 10816 5408.0 ## 548 125 10 48 4 15625 7812.5 ## 549 154 12 48 4 23716 11858.0 ## 550 170 14 48 4 28900 14450.0 ## 551 222 16 48 4 49284 24642.0 ## 552 261 18 48 4 68121 34060.5 ## 553 303 20 48 4 91809 45904.5 ## 554 322 21 48 4 103684 51842.0 ## 555 40 0 49 4 1600 800.0 ## 556 53 2 49 4 2809 1404.5 ## 557 64 4 49 4 4096 2048.0 ## 558 85 6 49 4 7225 3612.5 ## 559 108 8 49 4 11664 5832.0 ## 560 128 10 49 4 16384 8192.0 ## 561 152 12 49 4 23104 11552.0 ## 562 166 14 49 4 27556 13778.0 ## 563 184 16 49 4 33856 16928.0 ## 564 203 18 49 4 41209 20604.5 ## 565 233 20 49 4 54289 27144.5 ## 566 237 21 49 4 56169 28084.5 ## 567 41 0 50 4 1681 840.5 ## 568 54 2 50 4 2916 1458.0 ## 569 67 4 50 4 4489 2244.5 ## 570 84 6 50 4 7056 3528.0 ## 571 105 8 50 4 11025 5512.5 ## 572 122 10 50 4 14884 7442.0 ## 573 155 12 50 4 24025 12012.5 ## 574 175 14 50 4 30625 15312.5 ## 575 205 16 50 4 42025 21012.5 ## 576 234 18 50 4 54756 27378.0 ## 577 264 20 50 4 69696 34848.0 ## 578 264 21 50 4 69696 34848.0
head(mydata)
## weight Time Chick Diet ## 1 42 0 1 1 ## 2 51 2 1 1 ## 3 59 4 1 1 ## 4 64 6 1 1 ## 5 76 8 1 1 ## 6 93 10 1 1
myStates = mutate(as.data.frame(state.x77), Region=state.region) group_by(myStates,Region)
## # A tibble: 50 × 9 ## # Groups: Region [4] ## Population Income Illiteracy `Life Exp` Murder `HS Grad` Frost Area Region ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> ## 1 3615 3624 2.1 69.0 15.1 41.3 20 50708 South ## 2 365 6315 1.5 69.3 11.3 66.7 152 566432 West ## 3 2212 4530 1.8 70.6 7.8 58.1 15 113417 West ## 4 2110 3378 1.9 70.7 10.1 39.9 65 51945 South ## 5 21198 5114 1.1 71.7 10.3 62.6 20 156361 West ## 6 2541 4884 0.7 72.1 6.8 63.9 166 103766 West ## 7 3100 5348 1.1 72.5 3.1 56 139 4862 Northe… ## 8 579 4809 0.9 70.1 6.2 54.6 103 1982 South ## 9 8277 4815 1.3 70.7 10.7 52.6 11 54090 South ## 10 4931 4091 2 68.5 13.9 40.6 60 58073 South ## # ℹ 40 more rows
myStates = mutate(as.data.frame(state.x77), Region=state.region) summarise(group_by(myStates,Region), AvgPopulationSize=mean(Population), SDPopulationSize=sqrt(var(Population)))
## # A tibble: 4 × 3 ## Region AvgPopulationSize SDPopulationSize ## <fct> <dbl> <dbl> ## 1 Northeast 5495. 6080. ## 2 South 4208. 2780. ## 3 North Central 4803 3703. ## 4 West 2915. 5579.
import pandas as pd mtcars = pd.read_csv('https://www.cmi.ac.in/~sourish/mtcars.csv') print(mtcars.query('mpg > 22 & hp<70'))
## mpg cyl disp hp drat wt qsec vs am gear carb ## 7 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 ## 17 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 ## 18 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 ## 19 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 ## 25 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
mtcars[ ['mpg','hp', 'carb'] ].head()
## mpg hp carb ## 0 21.0 110 4 ## 1 21.0 110 4 ## 2 22.8 93 1 ## 3 21.4 110 1 ## 4 18.7 175 2
mtcars['efficiency_ratio'] = mtcars['hp']/mtcars['mpg'] mtcars.head()
## mpg cyl disp hp drat ... vs am gear carb efficiency_ratio ## 0 21.0 6 160.0 110 3.90 ... 0 1 4 4 5.238095 ## 1 21.0 6 160.0 110 3.90 ... 0 1 4 4 5.238095 ## 2 22.8 4 108.0 93 3.85 ... 1 1 4 1 4.078947 ## 3 21.4 6 258.0 110 3.08 ... 1 0 3 1 5.140187 ## 4 18.7 8 360.0 175 3.15 ... 0 0 3 2 9.358289 ## ## [5 rows x 12 columns]
agg()
mtcars.agg(['mean','sum','min','max','median','std','var','prod'])
## mpg cyl ... carb efficiency_ratio ## mean 2.009063e+01 6.187500 ... 2.812500e+00 8.786765e+00 ## sum 6.429000e+02 198.000000 ... 9.000000e+01 2.811765e+02 ## min 1.040000e+01 4.000000 ... 1.000000e+00 1.710526e+00 ## max 3.390000e+01 8.000000 ... 8.000000e+00 2.233333e+01 ## median 1.920000e+01 6.000000 ... 2.000000e+00 6.658181e+00 ## std 6.026948e+00 1.785922 ... 1.615200e+00 6.073858e+00 ## var 3.632410e+01 3.189516 ... 2.608871e+00 3.689176e+01 ## prod 1.264241e+41 0.000000 ... 1.391569e+12 5.549885e+26 ## ## [8 rows x 12 columns]
When you have two or more DataFrames with the same column variables, and you want to put them together:
df1 = pd.DataFrame({"Student":["Eric", "Susan", "Todd"], "Grade":pd.Categorical(['B','A','C'])}) df2 = pd.DataFrame({"Student":["Anthony", "John", "Jodie"], "Grade":pd.Categorical(['A','B','B'])}) result = pd.concat([df1, df2]) print(result)
## Student Grade ## 0 Eric B ## 1 Susan A ## 2 Todd C ## 0 Anthony A ## 1 John B ## 2 Jodie B
left = pd.DataFrame({ "key1": ["K0", "K1", "K2", "K3"], "key2": ["K0", "K1", "K0", "K1"], "A": ["A0", "A1", "A2", "A3"], "B": ["B0", "B1", "B2", "B3"] }) right = pd.DataFrame({ "key1": ["K0", "K1", "K1", "K2"], "key2": ["K0", "K0", "K0", "K0"], "C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"] }) result = pd.merge(left, right, on="key1")
pd.merge(left, right, how="inner",on=["key1","key2"])
pd.merge(left, right, how="outer",on=["key1""key2"])
pd.merge(left, right, how="left",on=["key1","key2"])
pd.merge(left, right, how="right",on=["key1","key2"])
pd.merge(left, right, how="cross")
groupby
mtcars.groupby(['cyl','gear']).mean()
## mpg disp hp ... am carb efficiency_ratio ## cyl gear ... ## 4 3 21.500 120.100000 97.000000 ... 0.00 1.000000 4.511628 ## 4 26.925 102.625000 76.000000 ... 0.75 1.500000 2.995326 ## 5 28.200 107.700000 102.000000 ... 1.00 2.000000 3.608553 ## 6 3 19.750 241.500000 107.500000 ... 0.00 1.000000 5.470646 ## 4 19.750 163.800000 116.500000 ... 0.50 4.000000 5.948138 ## 5 19.700 145.000000 175.000000 ... 1.00 6.000000 8.883249 ## 8 3 15.050 357.616667 194.166667 ... 0.00 3.083333 13.568820 ## 5 15.400 326.000000 299.500000 ... 1.00 6.000000 19.521097 ## ## [8 rows x 10 columns]