1. load libraries

2. Load Seurat Object


#Load Seurat Object merged from cell lines and a control after filtration
load("CD4Tcells_harmony_integrated_0.5_theta_patientorigin_orig_ident.Robj")

3. Identify the cluster

FeaturePlot(All_samples_Merged, features = c("CLEC4E", "IL1B", "LILRA5"))

VlnPlot(All_samples_Merged, features = c("CLEC4E", "IL1B", "LILRA5", "FCN1", "S100A8"), group.by = "cell_line")


VlnPlot(All_samples_Merged, features = c("CLEC4E", "IL1B", "LILRA5", "FCN1", "S100A8"), group.by = "harmony_res_0.9")


# List of genes you want to check
genes_of_interest <- c("CLEC4E", "IL1B", "LILRA5", "KCNE3", "PID1", "MPEG1", 
                       "FCN1", "S100A8", "OLR1", "G0S2", "ASGR2", "SPINK1", 
                       "SEMA6B", "HCK", "LYZ", "EREG", "SERPINB2", "LGALS2", 
                       "LINC01283", "CXCL1")

VlnPlot(All_samples_Merged, 
        features = genes_of_interest, # First 8 markers
        stack = TRUE,
        flip = TRUE) +
        ggtitle("CD4 T Cell Marker Distribution Across Clusters")

LS0tCnRpdGxlOiAiSWRlbnRpZnkgdGhlIGNsdXN0ZXIgMTQoMC45KSBmcm9tIGhhcm1vbnkgaW50ZWdyYXRpb24gaW4gbm9ybWFsIENENCBUY2VsbHMiCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKCiMgMS4gbG9hZCBsaWJyYXJpZXMKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KFNldXJhdFdyYXBwZXJzKQpsaWJyYXJ5KFNldXJhdE9iamVjdCkKbGlicmFyeShTZXVyYXREYXRhKQpsaWJyYXJ5KHBhdGNod29yaykKbGlicmFyeShoYXJtb255KQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkocmV0aWN1bGF0ZSkKbGlicmFyeShBemltdXRoKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KFJ0c25lKQpsaWJyYXJ5KGhhcm1vbnkpCgoKYGBgCgoKCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3IgbG9hZF9zZXVyYXQsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKI0xvYWQgU2V1cmF0IE9iamVjdCBtZXJnZWQgZnJvbSBjZWxsIGxpbmVzIGFuZCBhIGNvbnRyb2wgYWZ0ZXIgZmlsdHJhdGlvbgpsb2FkKCJDRDRUY2VsbHNfaGFybW9ueV9pbnRlZ3JhdGVkXzAuNV90aGV0YV9wYXRpZW50b3JpZ2luX29yaWdfaWRlbnQuUm9iaiIpCgoKCmBgYAoKCiMgMy4gSWRlbnRpZnkgdGhlIGNsdXN0ZXIKYGBge3IgVjEsIGZpZy5oZWlnaHQ9MTIsIGZpZy53aWR0aD0xNn0KCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICAgIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsCiAgICAgICAgICAgICAgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICBsYWJlbC5ib3ggPSBUUlVFKSAKICAgIAoKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAiaGFybW9ueV9yZXNfMC44IiwKICAgICAgICAgICAgICBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIGxhYmVsLmJveCA9IFRSVUUpIAoKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAiaGFybW9ueV9yZXNfMC45IiwKICAgICAgICAgICAgICBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIGxhYmVsLmJveCA9IFRSVUUpIAoKCgpJZGVudHMoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSAiaGFybW9ueV9yZXNfMC45IgoKREVfY2x1c3RlcjE0IDwtIEZpbmRNYXJrZXJzKAogIG9iamVjdCA9IEFsbF9zYW1wbGVzX01lcmdlZCwKICBpZGVudC4xID0gIjE0IiwKICBsb2dmYy50aHJlc2hvbGQgPSAwLjI1LCAjIEFkanVzdCBhcyBuZWVkZWQKICBtaW4ucGN0ID0gMC4xICAgICAgICAgICMgQWRqdXN0IGFzIG5lZWRlZAopCgpoZWFkKERFX2NsdXN0ZXIxNCkKCndyaXRlLmNzdihERV9jbHVzdGVyMTQsICJERV9nZW5lc19jbHVzdGVyXzE0X3ZzX2FsbC5jc3YiKQoKCiMgREVfY2x1c3RlcjE1IDwtIEZpbmRNYXJrZXJzKAojICAgb2JqZWN0ID0gQWxsX3NhbXBsZXNfTWVyZ2VkLAojICAgaWRlbnQuMSA9ICIxNSIsICMgUmVwbGFjZSAiY2x1c3Rlcl9pZCIgd2l0aCB5b3VyIGNsdXN0ZXIgb2YgaW50ZXJlc3QKIyAgIGxvZ2ZjLnRocmVzaG9sZCA9IDAuMjUsICMgTWluaW11bSBsb2cgZm9sZCBjaGFuZ2UgZm9yIG1hcmtlciBnZW5lcwojICAgbWluLnBjdCA9IDAuMSAgICAgICAgICAjIE1pbmltdW0gcGVyY2VudGFnZSBvZiBjZWxscyBleHByZXNzaW5nIHRoZSBnZW5lCiMgKQoKI2hlYWQoREVfY2x1c3RlcjE1KQoKI3dyaXRlLmNzdihERV9jbHVzdGVyMTUsICJERV9nZW5lc19jbHVzdGVyXzE1X3ZzX2FsbC5jc3YiKQoKCkZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZXMgPSBjKCJDTEVDNEUiLCAiSUwxQiIsICJMSUxSQTUiKSkKClZsblBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlcyA9IGMoIkNMRUM0RSIsICJJTDFCIiwgIkxJTFJBNSIsICJGQ04xIiwgIlMxMDBBOCIpLCBncm91cC5ieSA9ICJjZWxsX2xpbmUiKQoKVmxuUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygiQ0xFQzRFIiwgIklMMUIiLCAiTElMUkE1IiwgIkZDTjEiLCAiUzEwMEE4IiksIGdyb3VwLmJ5ID0gImhhcm1vbnlfcmVzXzAuOSIpCgojIExpc3Qgb2YgZ2VuZXMgeW91IHdhbnQgdG8gY2hlY2sKZ2VuZXNfb2ZfaW50ZXJlc3QgPC0gYygiQ0xFQzRFIiwgIklMMUIiLCAiTElMUkE1IiwgIktDTkUzIiwgIlBJRDEiLCAiTVBFRzEiLCAKICAgICAgICAgICAgICAgICAgICAgICAiRkNOMSIsICJTMTAwQTgiLCAiT0xSMSIsICJHMFMyIiwgIkFTR1IyIiwgIlNQSU5LMSIsIAogICAgICAgICAgICAgICAgICAgICAgICJTRU1BNkIiLCAiSENLIiwgIkxZWiIsICJFUkVHIiwgIlNFUlBJTkIyIiwgIkxHQUxTMiIsIAogICAgICAgICAgICAgICAgICAgICAgICJMSU5DMDEyODMiLCAiQ1hDTDEiKQoKVmxuUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgIGZlYXR1cmVzID0gZ2VuZXNfb2ZfaW50ZXJlc3QsICMgRmlyc3QgOCBtYXJrZXJzCiAgICAgICAgc3RhY2sgPSBUUlVFLAogICAgICAgIGZsaXAgPSBUUlVFKSArCiAgICAgICAgZ2d0aXRsZSgiQ0Q0IFQgQ2VsbCBNYXJrZXIgRGlzdHJpYnV0aW9uIEFjcm9zcyBDbHVzdGVycyIpCgoKCmBgYAoK