1. load libraries
2. Load Seurat Object
#Load Seurat Object merged from cell lines and a control after filtration
load("../22-Seurat_Integrate/0-R_Objects/CD4Tcells_SCTnormalized_done_on_HPC_inluding_Patient_origin.robj")
# Visualize before Harmony integration
DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "Patient_origin",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Cell Line")

before <- DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "cell_line",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Cell Line")
DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "cell_line",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Cell Line")

DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "SCT_snn_res.0.5",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Clusters")

DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "predicted.celltype.l1",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Annotation.l1")

DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "predicted.celltype.l2",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Annotation.l2")

DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "predicted.celltype.l3",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Annotation.l3")

table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$SCT_snn_res.0.5)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
B intermediate 0 3 0 0 0 0 2 0 0 0 0 0 2 0
B memory 8 6 1 0 85 0 30 2 0 115 4 0 1 0
CD14 Mono 0 1 0 0 0 0 4 0 0 7 0 0 0 0
CD4 CTL 0 0 0 0 0 12 0 0 0 0 0 0 0 1
CD4 Naive 0 8 0 0 0 517 0 0 1479 0 0 37 0 1
CD4 Proliferating 5448 2474 5388 2852 3954 0 3256 2863 6 1270 1407 0 93 0
CD4 TCM 871 3414 522 269 536 4214 106 29 1838 457 46 425 49 54
CD4 TEM 0 1 0 0 0 61 0 0 21 0 0 1 0 0
CD8 Proliferating 0 0 0 0 1 0 0 0 0 1 0 0 0 0
CD8 TCM 0 1 0 16 0 0 0 0 0 0 0 0 0 0
CD8 TEM 0 1 0 8 3 0 2 0 0 1 0 0 0 0
cDC1 0 0 0 0 5 0 2 0 0 0 0 0 1 0
cDC2 0 1 2 0 3 0 10 0 0 36 0 0 0 1
dnT 0 3 1 1 1 0 2 0 0 3 0 1 3 0
HSPC 57 10 1 0 211 0 678 483 0 5 358 0 2 0
NK Proliferating 4 40 23 2785 237 0 10 12 0 22 1 0 27 0
Treg 15 14 1 0 1 0 0 0 0 0 0 1 13 0
3. Perform Harmony Integration
# Perform Harmony integration
All_samples_Merged <- RunHarmony(All_samples_Merged,
group.by.vars = c( "cell_line"),
reduction.use = "pca",
dim.use = 1:15,
assay.use = "SCT")
Transposing data matrix
Initializing state using k-means centroids initialization
Harmony 1/10
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony 2/10
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony converged after 2 iterations
# Check if Harmony integration ran successfully
print(names(All_samples_Merged@reductions)) # Should include "harmony"
[1] "integrated_dr" "ref.umap" "pca" "umap" "harmony"
# Find neighbors using the Harmony reduction and explicitly name the graph
All_samples_Merged <- FindNeighbors(All_samples_Merged,
reduction = "harmony", # Harmony reduction used
dims = 1:15, # Use first 15 dimensions of the Harmony reduction
graph.name = "harmony_snn") # Explicitly name the graph
Computing nearest neighbor graph
Computing SNN
Only one graph name supplied, storing nearest-neighbor graph only
# Check if the "harmony_snn" graph is present
print(names(All_samples_Merged@graphs)) # Should now include "harmony_snn"
[1] "SCT_nn" "SCT_snn" "harmony_snn"
# Find clusters for each resolution and store them
resolutions <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2)
for (res in resolutions) {
cluster_name <- paste0("harmony_res_", res) # Dynamic cluster name
All_samples_Merged <- FindClusters(
object = All_samples_Merged,
graph.name = "harmony_snn", # Graph created in FindNeighbors
resolution = res, # Resolution for clustering
verbose = FALSE
)
# Add cluster identities to metadata
All_samples_Merged[[cluster_name]] <- Idents(All_samples_Merged)
}
# Run UMAP on the new Harmony reduction
All_samples_Merged <- RunUMAP(All_samples_Merged,
reduction = "harmony",
dims = 1:15)
18:49:38 UMAP embedding parameters a = 0.9922 b = 1.112
18:49:38 Read 49372 rows and found 15 numeric columns
18:49:38 Using Annoy for neighbor search, n_neighbors = 30
18:49:38 Building Annoy index with metric = cosine, n_trees = 50
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
18:49:42 Writing NN index file to temp file /tmp/RtmpW4aDAH/file1480649d292de
18:49:42 Searching Annoy index using 1 thread, search_k = 3000
18:49:54 Annoy recall = 100%
18:49:55 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
18:49:57 Initializing from normalized Laplacian + noise (using RSpectra)
18:49:58 Commencing optimization for 200 epochs, with 2054050 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
18:50:14 Optimization finished
4. Visualize Harmony Integrated Data
# Visualization after Harmony
# By cell line
p3 <- DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "cell_line",
label = TRUE,
label.box = TRUE) +
ggtitle("After Harmony - By Cell Line")
# By clusters
p4 <- DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "harmony_res_0.7",
label = TRUE,
label.box = TRUE) +
ggtitle("After Harmony - By Clusters")
# By cell type annotations
p5 <- DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "predicted.celltype.l2",
label = TRUE,
label.box = TRUE) +
ggtitle("After Harmony - Cell Type Annotations")
# Print comparison plots
p3 + p4

print(p5)

after <- DimPlot(All_samples_Merged, reduction = "umap", group.by = "cell_line", label = T, label.box = T, repel = T) +
ggtitle("Harmony Integration - By Cell Line")
before|after

DimPlot(All_samples_Merged, reduction = "umap", group.by = "cell_line", label = T, label.box = T, repel = T) +
ggtitle("Harmony Integration - By Cell Line")

DimPlot(All_samples_Merged, reduction = "umap", group.by = "harmony_res_0.7",label = T, label.box = T, repel = T) +
ggtitle("Harmony Integration - By Clusters")

DimPlot(All_samples_Merged, reduction = "umap", group.by = "predicted.celltype.l2",label = T, label.box = T, repel = T) +
ggtitle("Harmony Integration - Annotations")

table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$cell_line)
L1 L2 L3 L4 L5 L6 L7 PBMC PBMC_10x
B intermediate 0 0 2 1 2 2 0 0 0
B memory 0 0 11 1 38 82 120 0 0
CD14 Mono 0 0 1 0 5 0 6 0 0
CD4 CTL 0 0 0 0 0 0 0 12 1
CD4 Naive 0 0 0 7 0 0 0 523 1512
CD4 Proliferating 2461 2852 5452 5391 4732 4002 4115 0 6
CD4 TCM 3320 270 887 562 178 557 517 4576 1963
CD4 TEM 1 0 0 0 0 0 0 60 23
CD8 Proliferating 0 0 0 0 0 1 1 0 0
CD8 TCM 1 16 0 0 0 0 0 0 0
CD8 TEM 1 8 0 0 2 3 1 0 0
cDC1 0 0 0 0 2 6 0 0 0
cDC2 0 0 0 4 11 3 35 0 0
dnT 2 3 0 1 2 5 2 0 0
HSPC 0 0 60 7 1035 213 490 0 0
NK Proliferating 38 2785 6 24 11 259 38 0 0
Treg 1 1 9 9 4 15 6 0 0
table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$harmony_res_0.7)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
B intermediate 0 0 1 1 0 0 0 0 0 0 0 3 1 1
B memory 0 2 8 9 1 23 151 0 3 0 2 51 2 0
CD14 Mono 0 0 0 0 0 0 11 0 0 0 0 1 0 0
CD4 CTL 4 0 3 0 0 1 4 0 0 0 0 1 0 0
CD4 Naive 1971 2 16 5 1 1 0 0 0 0 0 1 38 7
CD4 Proliferating 29 6098 3145 4309 5055 2804 463 1973 1431 1591 866 864 382 1
CD4 TCM 5613 156 647 1357 216 1719 2095 14 45 3 11 306 615 33
CD4 TEM 70 2 4 0 1 1 4 0 0 0 0 0 2 0
CD8 Proliferating 0 0 0 0 0 0 2 0 0 0 0 0 0 0
CD8 TCM 0 0 1 10 1 4 1 0 0 0 0 0 0 0
CD8 TEM 0 0 0 1 0 4 7 0 0 0 0 0 3 0
cDC1 0 0 0 0 0 0 1 0 0 0 0 6 1 0
cDC2 0 1 0 0 1 0 45 0 1 0 0 5 0 0
dnT 0 0 2 0 0 0 6 0 0 0 0 1 6 0
HSPC 0 675 10 88 21 51 5 16 346 0 554 31 2 6
NK Proliferating 13 211 2385 2 17 14 7 362 0 15 1 13 121 0
Treg 0 0 9 0 0 0 2 0 0 0 0 1 31 2
Visualize Harmony Integrated Data distribution
table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$cell_line)
L1 L2 L3 L4 L5 L6 L7 PBMC PBMC_10x
B intermediate 0 0 2 1 2 2 0 0 0
B memory 0 0 11 1 38 82 120 0 0
CD14 Mono 0 0 1 0 5 0 6 0 0
CD4 CTL 0 0 0 0 0 0 0 12 1
CD4 Naive 0 0 0 7 0 0 0 523 1512
CD4 Proliferating 2461 2852 5452 5391 4732 4002 4115 0 6
CD4 TCM 3320 270 887 562 178 557 517 4576 1963
CD4 TEM 1 0 0 0 0 0 0 60 23
CD8 Proliferating 0 0 0 0 0 1 1 0 0
CD8 TCM 1 16 0 0 0 0 0 0 0
CD8 TEM 1 8 0 0 2 3 1 0 0
cDC1 0 0 0 0 2 6 0 0 0
cDC2 0 0 0 4 11 3 35 0 0
dnT 2 3 0 1 2 5 2 0 0
HSPC 0 0 60 7 1035 213 490 0 0
NK Proliferating 38 2785 6 24 11 259 38 0 0
Treg 1 1 9 9 4 15 6 0 0
table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$harmony_res_0.7)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
B intermediate 0 0 1 1 0 0 0 0 0 0 0 3 1 1
B memory 0 2 8 9 1 23 151 0 3 0 2 51 2 0
CD14 Mono 0 0 0 0 0 0 11 0 0 0 0 1 0 0
CD4 CTL 4 0 3 0 0 1 4 0 0 0 0 1 0 0
CD4 Naive 1971 2 16 5 1 1 0 0 0 0 0 1 38 7
CD4 Proliferating 29 6098 3145 4309 5055 2804 463 1973 1431 1591 866 864 382 1
CD4 TCM 5613 156 647 1357 216 1719 2095 14 45 3 11 306 615 33
CD4 TEM 70 2 4 0 1 1 4 0 0 0 0 0 2 0
CD8 Proliferating 0 0 0 0 0 0 2 0 0 0 0 0 0 0
CD8 TCM 0 0 1 10 1 4 1 0 0 0 0 0 0 0
CD8 TEM 0 0 0 1 0 4 7 0 0 0 0 0 3 0
cDC1 0 0 0 0 0 0 1 0 0 0 0 6 1 0
cDC2 0 1 0 0 1 0 45 0 1 0 0 5 0 0
dnT 0 0 2 0 0 0 6 0 0 0 0 1 6 0
HSPC 0 675 10 88 21 51 5 16 346 0 554 31 2 6
NK Proliferating 13 211 2385 2 17 14 7 362 0 15 1 13 121 0
Treg 0 0 9 0 0 0 2 0 0 0 0 1 31 2
table(All_samples_Merged$cell_line, All_samples_Merged$harmony_res_0.7)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
L1 17 46 1586 612 84 1334 1037 359 0 360 1 93 296 0
L2 12 13 4210 117 4 583 60 527 0 271 0 9 129 0
L3 0 6 22 2862 2647 655 35 21 0 20 0 115 45 0
L4 7 112 19 1747 2532 508 513 111 0 110 0 281 18 49
L5 0 1439 31 115 10 451 161 231 1789 130 1383 260 22 0
L6 4 2674 38 154 9 517 304 543 9 397 4 344 150 1
L7 4 2842 105 135 6 547 577 573 28 319 46 114 35 0
PBMC 4401 9 190 28 17 25 74 0 0 0 0 46 381 0
PBMC_10x 3255 6 30 12 5 2 43 0 0 2 0 22 128 0
5. Marker Gene Visualization
# Set marker genes specific to requested immune cell types
myfeatures1 <- c("CD19", "CD79A", "MS4A1", # B cells
"CD14", "LYZ", "FCGR3A", # Monocytes
"CSF1R", "CD68", # Macrophages
"NKG7", "GNLY", "KIR3DL1", # NK cells
"MKI67", # Proliferating NK cells
"CD34", "KIT", # HSPCs
"CD3E", "CCR7", # T cells
"SELL", "CD45RO", # Tnaive, Tcm
"CD44", "CD45RA") # Tem, Temra
cd4_feature_plot1 <- FeaturePlot(
All_samples_Merged,
features = myfeatures1,
reduction = "umap",
ncol = 4
) +
ggtitle("CD4 T Cell Marker Expression - Harmony Integration") +
NoLegend()
Warning: Could not find CD45RO in the default search locations, found in 'ADT' assay insteadWarning: Could not find CD45RA in the default search locations, found in 'ADT' assay instead
# Display the plot
print(cd4_feature_plot1)

# Define markers specific to CD4 T cells and their subsets
cd4_markers <- c(
"CD4", # General CD4 T cells
"IL7R", # Naive T cells
"CCR7", # T central memory (Tcm) cells
"SELL", # T naive cells
"FOXP3", # Regulatory T cells (Tregs)
"IL2RA", # Activated T cells
"PDCD1", # Exhausted T cells
"LAG3", # Exhausted T cells
"TIGIT", # Exhausted T cells
"GATA3", # Th2 cells
"TBX21", # Th1 cells
"RORC", # Th17 cells
"BCL6" # T follicular helper (Tfh) cells
)
# Visualize marker genes for CD4 T cells
cd4_feature_plot2 <- FeaturePlot(
All_samples_Merged,
features = cd4_markers,
reduction = "umap",
ncol = 4
) +
ggtitle("CD4 T Cell Marker Expression - Harmony Integration") +
NoLegend()
# Display the plot
print(cd4_feature_plot2)

CD4 T Cell Marker Visualization
# Set marker genes specific to CD4 T cell biology and states
cd4_markers <- c(
# Core T cell markers
"CD3E", # T cell marker
"CD4", # CD4 T cell marker
# Naive/Memory markers
"CCR7", # Naive/Central memory
"SELL", # L-selectin, naive marker
"CD27", # Memory marker
"IL7R", # Naive/Memory marker
# Activation/State markers
"IL2RA", # CD25, activation marker
"CD69", # Early activation
"HLA-DRA", # Activation marker
# Exhaustion markers
"PDCD1", # PD-1
"LAG3", # Exhaustion marker
"TIGIT", # Exhaustion marker
# Regulatory T cell markers
"FOXP3", # Treg marker
"IL2RA", # CD25, Treg marker
"CTLA4", # Treg/exhaustion marker
# Effector/Function markers
"IL2", # T cell function
"IFNG", # Th1
"IL4", # Th2
"IL13", # Th2
"IL17A" # Th17
)
# Create feature plots with better visualization
FeaturePlot(All_samples_Merged,
features = cd4_markers,
reduction = "umap",
ncol = 4,
pt.size = 0.1, # Smaller point size for better resolution
min.cutoff = "q1", # Remove bottom 1% of expression
max.cutoff = "q99", # Remove top 1% of expression
order = TRUE) + # Plot highest expressing cells on top
ggtitle("CD4 T Cell Marker Expression - Harmony Integration") +
theme(plot.title = element_text(size = 16, face = "bold")) +
NoLegend()

# Optional: Add violin plots to see expression distribution across clusters
VlnPlot(All_samples_Merged,
features = cd4_markers[1:20], # First 8 markers
stack = TRUE,
flip = TRUE) +
ggtitle("CD4 T Cell Marker Distribution Across Clusters")

NA
NA
6. Save the Seurat object as an Robj file
save(All_samples_Merged, file = "CD4Tcells_harmony_integrated_0.5_theta_patientorigin_orig_ident.Robj")
LS0tCnRpdGxlOiAiSGFybW9ueSBpbnRlZ3JhdGlvbnMgb2YgUEJNQzEweCBieSBjZWxsTGluZSAtdGhldGEtZGVmYXVsdCBib3RoIgphdXRob3I6IE5hc2lyIE1haG1vb2QgQWJiYXNpCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogICNybWRmb3JtYXRzOjpyZWFkdGhlZG93bgogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgdG9jX2NvbGxhcHNlZDogdHJ1ZQotLS0KCgojIDEuIGxvYWQgbGlicmFyaWVzCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQpsaWJyYXJ5KFNldXJhdCkKbGlicmFyeShTZXVyYXRXcmFwcGVycykKbGlicmFyeShTZXVyYXRPYmplY3QpCmxpYnJhcnkoU2V1cmF0RGF0YSkKbGlicmFyeShwYXRjaHdvcmspCmxpYnJhcnkoaGFybW9ueSkKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KHJldGljdWxhdGUpCmxpYnJhcnkoQXppbXV0aCkKbGlicmFyeShkcGx5cikKbGlicmFyeShSdHNuZSkKbGlicmFyeShoYXJtb255KQoKCmBgYAoKCgoKIyAyLiBMb2FkIFNldXJhdCBPYmplY3QgCmBgYHtyIGxvYWRfc2V1cmF0LCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMH0KCiNMb2FkIFNldXJhdCBPYmplY3QgbWVyZ2VkIGZyb20gY2VsbCBsaW5lcyBhbmQgYSBjb250cm9sIGFmdGVyIGZpbHRyYXRpb24KbG9hZCgiLi4vMjItU2V1cmF0X0ludGVncmF0ZS8wLVJfT2JqZWN0cy9DRDRUY2VsbHNfU0NUbm9ybWFsaXplZF9kb25lX29uX0hQQ19pbmx1ZGluZ19QYXRpZW50X29yaWdpbi5yb2JqIikKCgoKIyBWaXN1YWxpemUgYmVmb3JlIEhhcm1vbnkgaW50ZWdyYXRpb24KRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAiUGF0aWVudF9vcmlnaW4iLAogICAgICAgICAgICAgIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgbGFiZWwuYm94ID0gVFJVRSkgKyAKICAgICAgZ2d0aXRsZSgiQmVmb3JlIEhhcm1vbnkgLSBCeSBDZWxsIExpbmUiKQoKCmJlZm9yZSA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgICBncm91cC5ieSA9ICJjZWxsX2xpbmUiLAogICAgICAgICAgICAgIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgbGFiZWwuYm94ID0gVFJVRSkgKyAKICAgICAgZ2d0aXRsZSgiQmVmb3JlIEhhcm1vbnkgLSBCeSBDZWxsIExpbmUiKQoKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICAgIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsCiAgICAgICAgICAgICAgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICBsYWJlbC5ib3ggPSBUUlVFKSArIAogICAgICBnZ3RpdGxlKCJCZWZvcmUgSGFybW9ueSAtIEJ5IENlbGwgTGluZSIpCgoKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAiU0NUX3Nubl9yZXMuMC41IiwKICAgICAgICAgICAgICBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIGxhYmVsLmJveCA9IFRSVUUpICsgCiAgICAgIGdndGl0bGUoIkJlZm9yZSBIYXJtb255IC0gQnkgQ2x1c3RlcnMiKQoKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwxIiwKICAgICAgICAgICAgICBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIGxhYmVsLmJveCA9IFRSVUUpICsgCiAgICAgIGdndGl0bGUoIkJlZm9yZSBIYXJtb255IC0gQnkgQW5ub3RhdGlvbi5sMSIpCgoKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIiwKICAgICAgICAgICAgICBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIGxhYmVsLmJveCA9IFRSVUUpICsgCiAgICAgIGdndGl0bGUoIkJlZm9yZSBIYXJtb255IC0gQnkgQW5ub3RhdGlvbi5sMiIpCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgICBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDMiLAogICAgICAgICAgICAgIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgbGFiZWwuYm94ID0gVFJVRSkgKyAKICAgICAgZ2d0aXRsZSgiQmVmb3JlIEhhcm1vbnkgLSBCeSBBbm5vdGF0aW9uLmwzIikKCgp0YWJsZShBbGxfc2FtcGxlc19NZXJnZWQkcHJlZGljdGVkLmNlbGx0eXBlLmwyLCBBbGxfc2FtcGxlc19NZXJnZWQkU0NUX3Nubl9yZXMuMC41KQoKCmBgYAoKCiMgMy4gIFBlcmZvcm0gSGFybW9ueSBJbnRlZ3JhdGlvbgpgYGB7ciBoYXJtb255LWludGVncmF0aW9uLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KCiMgUGVyZm9ybSBIYXJtb255IGludGVncmF0aW9uCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBSdW5IYXJtb255KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdyb3VwLmJ5LnZhcnMgPSBjKCAiY2VsbF9saW5lIiksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZWR1Y3Rpb24udXNlID0gInBjYSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkaW0udXNlID0gMToxNSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYXNzYXkudXNlID0gIlNDVCIpCgojIENoZWNrIGlmIEhhcm1vbnkgaW50ZWdyYXRpb24gcmFuIHN1Y2Nlc3NmdWxseQpwcmludChuYW1lcyhBbGxfc2FtcGxlc19NZXJnZWRAcmVkdWN0aW9ucykpICAjIFNob3VsZCBpbmNsdWRlICJoYXJtb255IgoKIyBGaW5kIG5laWdoYm9ycyB1c2luZyB0aGUgSGFybW9ueSByZWR1Y3Rpb24gYW5kIGV4cGxpY2l0bHkgbmFtZSB0aGUgZ3JhcGgKQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIEZpbmROZWlnaGJvcnMoQWxsX3NhbXBsZXNfTWVyZ2VkLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAiaGFybW9ueSIsICAgIyBIYXJtb255IHJlZHVjdGlvbiB1c2VkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpbXMgPSAxOjE1LCAgICAgICAgICAgICAjIFVzZSBmaXJzdCAxNSBkaW1lbnNpb25zIG9mIHRoZSBIYXJtb255IHJlZHVjdGlvbgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBncmFwaC5uYW1lID0gImhhcm1vbnlfc25uIikgICMgRXhwbGljaXRseSBuYW1lIHRoZSBncmFwaAoKIyBDaGVjayBpZiB0aGUgImhhcm1vbnlfc25uIiBncmFwaCBpcyBwcmVzZW50CnByaW50KG5hbWVzKEFsbF9zYW1wbGVzX01lcmdlZEBncmFwaHMpKSAgIyBTaG91bGQgbm93IGluY2x1ZGUgImhhcm1vbnlfc25uIgoKCiMgRmluZCBjbHVzdGVycyBmb3IgZWFjaCByZXNvbHV0aW9uIGFuZCBzdG9yZSB0aGVtCnJlc29sdXRpb25zIDwtIGMoMC4xLCAwLjIsIDAuMywgMC40LCAwLjUsIDAuNiwgMC43LCAwLjgsIDAuOSwgMSwgMS4yKQpmb3IgKHJlcyBpbiByZXNvbHV0aW9ucykgewogIGNsdXN0ZXJfbmFtZSA8LSBwYXN0ZTAoImhhcm1vbnlfcmVzXyIsIHJlcykgICMgRHluYW1pYyBjbHVzdGVyIG5hbWUKICBBbGxfc2FtcGxlc19NZXJnZWQgPC0gRmluZENsdXN0ZXJzKAogICAgb2JqZWN0ID0gQWxsX3NhbXBsZXNfTWVyZ2VkLAogICAgZ3JhcGgubmFtZSA9ICJoYXJtb255X3NubiIsICAgICAgICAgICAgICAgIyBHcmFwaCBjcmVhdGVkIGluIEZpbmROZWlnaGJvcnMKICAgIHJlc29sdXRpb24gPSByZXMsICAgICAgICAgICAgICAgICAgICAgICAgICMgUmVzb2x1dGlvbiBmb3IgY2x1c3RlcmluZwogICAgdmVyYm9zZSA9IEZBTFNFCiAgKQogICMgQWRkIGNsdXN0ZXIgaWRlbnRpdGllcyB0byBtZXRhZGF0YQogIEFsbF9zYW1wbGVzX01lcmdlZFtbY2x1c3Rlcl9uYW1lXV0gPC0gSWRlbnRzKEFsbF9zYW1wbGVzX01lcmdlZCkKfQoKIyBSdW4gVU1BUCBvbiB0aGUgbmV3IEhhcm1vbnkgcmVkdWN0aW9uCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBSdW5VTUFQKEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJoYXJtb255IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpbXMgPSAxOjE1KQoKCmBgYAoKIyA0LiAgVmlzdWFsaXplIEhhcm1vbnkgSW50ZWdyYXRlZCBEYXRhCmBgYHtyIGhhcm1vbnktdmlzdWFsaXphdGlvbjEsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQoKIyBWaXN1YWxpemF0aW9uIGFmdGVyIEhhcm1vbnkKCiMgQnkgY2VsbCBsaW5lCnAzIDwtIERpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICAgIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsCiAgICAgICAgICAgICAgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICBsYWJlbC5ib3ggPSBUUlVFKSArIAogICAgICBnZ3RpdGxlKCJBZnRlciBIYXJtb255IC0gQnkgQ2VsbCBMaW5lIikKCiMgQnkgY2x1c3RlcnMKcDQgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAiaGFybW9ueV9yZXNfMC43IiwKICAgICAgICAgICAgICBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIGxhYmVsLmJveCA9IFRSVUUpICsgCiAgICAgIGdndGl0bGUoIkFmdGVyIEhhcm1vbnkgLSBCeSBDbHVzdGVycyIpCgojIEJ5IGNlbGwgdHlwZSBhbm5vdGF0aW9ucwpwNSA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgICBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLAogICAgICAgICAgICAgIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgbGFiZWwuYm94ID0gVFJVRSkgKyAKICAgICAgZ2d0aXRsZSgiQWZ0ZXIgSGFybW9ueSAtIENlbGwgVHlwZSBBbm5vdGF0aW9ucyIpCgojIFByaW50IGNvbXBhcmlzb24gcGxvdHMKcDMgKyBwNApwcmludChwNSkKCmFmdGVyIDwtIERpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAidW1hcCIsIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsIGxhYmVsID0gVCwgbGFiZWwuYm94ID0gVCwgcmVwZWwgPSBUKSArIAogIGdndGl0bGUoIkhhcm1vbnkgSW50ZWdyYXRpb24gLSBCeSBDZWxsIExpbmUiKQoKYmVmb3JlfGFmdGVyCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gInVtYXAiLCBncm91cC5ieSA9ICJjZWxsX2xpbmUiLCBsYWJlbCA9IFQsIGxhYmVsLmJveCA9IFQsIHJlcGVsID0gVCkgKyAKICBnZ3RpdGxlKCJIYXJtb255IEludGVncmF0aW9uIC0gQnkgQ2VsbCBMaW5lIikKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICJ1bWFwIiwgZ3JvdXAuYnkgPSAiaGFybW9ueV9yZXNfMC43IixsYWJlbCA9IFQsIGxhYmVsLmJveCA9IFQsIHJlcGVsID0gVCkgKyAKICBnZ3RpdGxlKCJIYXJtb255IEludGVncmF0aW9uIC0gQnkgQ2x1c3RlcnMiKQpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gInVtYXAiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLGxhYmVsID0gVCwgbGFiZWwuYm94ID0gVCwgcmVwZWwgPSBUKSArIAogIGdndGl0bGUoIkhhcm1vbnkgSW50ZWdyYXRpb24gLSBBbm5vdGF0aW9ucyIpCgp0YWJsZShBbGxfc2FtcGxlc19NZXJnZWQkcHJlZGljdGVkLmNlbGx0eXBlLmwyLCBBbGxfc2FtcGxlc19NZXJnZWQkY2VsbF9saW5lKQoKdGFibGUoQWxsX3NhbXBsZXNfTWVyZ2VkJHByZWRpY3RlZC5jZWxsdHlwZS5sMiwgQWxsX3NhbXBsZXNfTWVyZ2VkJGhhcm1vbnlfcmVzXzAuNykKCmBgYAoKIyMgIFZpc3VhbGl6ZSBIYXJtb255IEludGVncmF0ZWQgRGF0YSBkaXN0cmlidXRpb24KYGBge3IgaGFybW9ueS10YWJsZXMsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQoKCnRhYmxlKEFsbF9zYW1wbGVzX01lcmdlZCRwcmVkaWN0ZWQuY2VsbHR5cGUubDIsIEFsbF9zYW1wbGVzX01lcmdlZCRjZWxsX2xpbmUpCgp0YWJsZShBbGxfc2FtcGxlc19NZXJnZWQkcHJlZGljdGVkLmNlbGx0eXBlLmwyLCBBbGxfc2FtcGxlc19NZXJnZWQkaGFybW9ueV9yZXNfMC43KQoKdGFibGUoQWxsX3NhbXBsZXNfTWVyZ2VkJGNlbGxfbGluZSwgQWxsX3NhbXBsZXNfTWVyZ2VkJGhhcm1vbnlfcmVzXzAuNykKCmBgYAojIDUuICBNYXJrZXIgR2VuZSBWaXN1YWxpemF0aW9uCmBgYHtyIGZlYXR1cmVwbG90LWhhcm1vbnkxLCBmaWcuaGVpZ2h0PTE0LCBmaWcud2lkdGg9MTh9CgoKIyBTZXQgbWFya2VyIGdlbmVzIHNwZWNpZmljIHRvIHJlcXVlc3RlZCBpbW11bmUgY2VsbCB0eXBlcwpteWZlYXR1cmVzMSA8LSBjKCJDRDE5IiwgIkNENzlBIiwgIk1TNEExIiwgIyBCIGNlbGxzCiAgICAgICAgICAgICAgICAiQ0QxNCIsICJMWVoiLCAiRkNHUjNBIiwgIyBNb25vY3l0ZXMKICAgICAgICAgICAgICAgICJDU0YxUiIsICJDRDY4IiwgIyBNYWNyb3BoYWdlcwogICAgICAgICAgICAgICAgIk5LRzciLCAiR05MWSIsICJLSVIzREwxIiwgIyBOSyBjZWxscwogICAgICAgICAgICAgICAgIk1LSTY3IiwgIyBQcm9saWZlcmF0aW5nIE5LIGNlbGxzCiAgICAgICAgICAgICAgICAiQ0QzNCIsICJLSVQiLCAjIEhTUENzCiAgICAgICAgICAgICAgICAiQ0QzRSIsICJDQ1I3IiwgIyBUIGNlbGxzCiAgICAgICAgICAgICAgICAiU0VMTCIsICJDRDQ1Uk8iLCAjIFRuYWl2ZSwgVGNtCiAgICAgICAgICAgICAgICAiQ0Q0NCIsICJDRDQ1UkEiKSAjIFRlbSwgVGVtcmEKCmNkNF9mZWF0dXJlX3Bsb3QxIDwtIEZlYXR1cmVQbG90KAogIEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgZmVhdHVyZXMgPSBteWZlYXR1cmVzMSwgCiAgcmVkdWN0aW9uID0gInVtYXAiLCAKICBuY29sID0gNAopICsgCiAgZ2d0aXRsZSgiQ0Q0IFQgQ2VsbCBNYXJrZXIgRXhwcmVzc2lvbiAtIEhhcm1vbnkgSW50ZWdyYXRpb24iKSArCiAgTm9MZWdlbmQoKQoKIyBEaXNwbGF5IHRoZSBwbG90CnByaW50KGNkNF9mZWF0dXJlX3Bsb3QxKQoKIyBEZWZpbmUgbWFya2VycyBzcGVjaWZpYyB0byBDRDQgVCBjZWxscyBhbmQgdGhlaXIgc3Vic2V0cwpjZDRfbWFya2VycyA8LSBjKAogICJDRDQiLCAgICAgICAgICAjIEdlbmVyYWwgQ0Q0IFQgY2VsbHMKICAiSUw3UiIsICAgICAgICAgIyBOYWl2ZSBUIGNlbGxzCiAgIkNDUjciLCAgICAgICAgICMgVCBjZW50cmFsIG1lbW9yeSAoVGNtKSBjZWxscwogICJTRUxMIiwgICAgICAgICAjIFQgbmFpdmUgY2VsbHMKICAiRk9YUDMiLCAgICAgICAgIyBSZWd1bGF0b3J5IFQgY2VsbHMgKFRyZWdzKQogICJJTDJSQSIsICAgICAgICAjIEFjdGl2YXRlZCBUIGNlbGxzCiAgIlBEQ0QxIiwgICAgICAgICMgRXhoYXVzdGVkIFQgY2VsbHMKICAiTEFHMyIsICAgICAgICAgIyBFeGhhdXN0ZWQgVCBjZWxscwogICJUSUdJVCIsICAgICAgICAjIEV4aGF1c3RlZCBUIGNlbGxzCiAgIkdBVEEzIiwgICAgICAgICMgVGgyIGNlbGxzCiAgIlRCWDIxIiwgICAgICAgICMgVGgxIGNlbGxzCiAgIlJPUkMiLCAgICAgICAgICMgVGgxNyBjZWxscwogICJCQ0w2IiAgICAgICAgICAjIFQgZm9sbGljdWxhciBoZWxwZXIgKFRmaCkgY2VsbHMKKQoKIyBWaXN1YWxpemUgbWFya2VyIGdlbmVzIGZvciBDRDQgVCBjZWxscwpjZDRfZmVhdHVyZV9wbG90MiA8LSBGZWF0dXJlUGxvdCgKICBBbGxfc2FtcGxlc19NZXJnZWQsIAogIGZlYXR1cmVzID0gY2Q0X21hcmtlcnMsIAogIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgbmNvbCA9IDQKKSArIAogIGdndGl0bGUoIkNENCBUIENlbGwgTWFya2VyIEV4cHJlc3Npb24gLSBIYXJtb255IEludGVncmF0aW9uIikgKwogIE5vTGVnZW5kKCkKCiMgRGlzcGxheSB0aGUgcGxvdApwcmludChjZDRfZmVhdHVyZV9wbG90MikKYGBgCgojIyAgQ0Q0IFQgQ2VsbCBNYXJrZXIgVmlzdWFsaXphdGlvbgpgYGB7ciBmZWF0dXJlcGxvdC1oYXJtb255MiwgZmlnLmhlaWdodD0xMiwgZmlnLndpZHRoPTE2fQojIFNldCBtYXJrZXIgZ2VuZXMgc3BlY2lmaWMgdG8gQ0Q0IFQgY2VsbCBiaW9sb2d5IGFuZCBzdGF0ZXMKY2Q0X21hcmtlcnMgPC0gYygKICAgICMgQ29yZSBUIGNlbGwgbWFya2VycwogICAgIkNEM0UiLCAgICAgIyBUIGNlbGwgbWFya2VyCiAgICAiQ0Q0IiwgICAgICAjIENENCBUIGNlbGwgbWFya2VyCiAgICAKICAgICMgTmFpdmUvTWVtb3J5IG1hcmtlcnMKICAgICJDQ1I3IiwgICAgICMgTmFpdmUvQ2VudHJhbCBtZW1vcnkKICAgICJTRUxMIiwgICAgICMgTC1zZWxlY3RpbiwgbmFpdmUgbWFya2VyCiAgICAiQ0QyNyIsICAgICAjIE1lbW9yeSBtYXJrZXIKICAgICJJTDdSIiwgICAgICMgTmFpdmUvTWVtb3J5IG1hcmtlcgogICAgCiAgICAjIEFjdGl2YXRpb24vU3RhdGUgbWFya2VycwogICAgIklMMlJBIiwgICAgIyBDRDI1LCBhY3RpdmF0aW9uIG1hcmtlcgogICAgIkNENjkiLCAgICAgIyBFYXJseSBhY3RpdmF0aW9uCiAgICAiSExBLURSQSIsICAjIEFjdGl2YXRpb24gbWFya2VyCiAgICAKICAgICMgRXhoYXVzdGlvbiBtYXJrZXJzCiAgICAiUERDRDEiLCAgICAjIFBELTEKICAgICJMQUczIiwgICAgICMgRXhoYXVzdGlvbiBtYXJrZXIKICAgICJUSUdJVCIsICAgICMgRXhoYXVzdGlvbiBtYXJrZXIKICAgIAogICAgIyBSZWd1bGF0b3J5IFQgY2VsbCBtYXJrZXJzCiAgICAiRk9YUDMiLCAgICAjIFRyZWcgbWFya2VyCiAgICAiSUwyUkEiLCAgICAjIENEMjUsIFRyZWcgbWFya2VyCiAgICAiQ1RMQTQiLCAgICAjIFRyZWcvZXhoYXVzdGlvbiBtYXJrZXIKICAgIAogICAgIyBFZmZlY3Rvci9GdW5jdGlvbiBtYXJrZXJzCiAgICAiSUwyIiwgICAgICAjIFQgY2VsbCBmdW5jdGlvbgogICAgIklGTkciLCAgICAgIyBUaDEKICAgICJJTDQiLCAgICAgICMgVGgyCiAgICAiSUwxMyIsICAgICAjIFRoMgogICAgIklMMTdBIiAgICAgIyBUaDE3CikKCiMgQ3JlYXRlIGZlYXR1cmUgcGxvdHMgd2l0aCBiZXR0ZXIgdmlzdWFsaXphdGlvbgpGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICBmZWF0dXJlcyA9IGNkNF9tYXJrZXJzLCAKICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgbmNvbCA9IDQsCiAgICAgICAgICAgIHB0LnNpemUgPSAwLjEsICAgICAgICAgICAjIFNtYWxsZXIgcG9pbnQgc2l6ZSBmb3IgYmV0dGVyIHJlc29sdXRpb24KICAgICAgICAgICAgbWluLmN1dG9mZiA9ICJxMSIsICAgICAgICMgUmVtb3ZlIGJvdHRvbSAxJSBvZiBleHByZXNzaW9uCiAgICAgICAgICAgIG1heC5jdXRvZmYgPSAicTk5IiwgICAgICAjIFJlbW92ZSB0b3AgMSUgb2YgZXhwcmVzc2lvbgogICAgICAgICAgICBvcmRlciA9IFRSVUUpICsgICAgICAgICAgIyBQbG90IGhpZ2hlc3QgZXhwcmVzc2luZyBjZWxscyBvbiB0b3AKICAgIGdndGl0bGUoIkNENCBUIENlbGwgTWFya2VyIEV4cHJlc3Npb24gLSBIYXJtb255IEludGVncmF0aW9uIikgKwogICAgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTYsIGZhY2UgPSAiYm9sZCIpKSArCiAgICBOb0xlZ2VuZCgpCgojIE9wdGlvbmFsOiBBZGQgdmlvbGluIHBsb3RzIHRvIHNlZSBleHByZXNzaW9uIGRpc3RyaWJ1dGlvbiBhY3Jvc3MgY2x1c3RlcnMKVmxuUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgIGZlYXR1cmVzID0gY2Q0X21hcmtlcnNbMToyMF0sICMgRmlyc3QgOCBtYXJrZXJzCiAgICAgICAgc3RhY2sgPSBUUlVFLAogICAgICAgIGZsaXAgPSBUUlVFKSArCiAgICAgICAgZ2d0aXRsZSgiQ0Q0IFQgQ2VsbCBNYXJrZXIgRGlzdHJpYnV0aW9uIEFjcm9zcyBDbHVzdGVycyIpCgoKYGBgCgoKIyA2LiBTYXZlIHRoZSBTZXVyYXQgb2JqZWN0IGFzIGFuIFJvYmogZmlsZQpgYGB7ciBzYXZlUk9CSn0KCiNzYXZlKEFsbF9zYW1wbGVzX01lcmdlZCwgZmlsZSA9ICJDRDRUY2VsbHNfaGFybW9ueV9pbnRlZ3JhdGVkXzAuNV90aGV0YV9wYXRpZW50b3JpZ2luX29yaWdfaWRlbnQuUm9iaiIpCgpgYGAKCgoKCg==