1. load libraries
2. Load Seurat Object
#Load Seurat Object merged from cell lines and a control after filtration
load("../22-Seurat_Integrate/0-R_Objects/CD4Tcells_SCTnormalized_done_on_HPC_inluding_Patient_origin.robj")
# Visualize before Harmony integration
DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "Patient_origin",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Cell Line")

before <- DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "cell_line",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Cell Line")
DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "cell_line",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Cell Line")

DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "SCT_snn_res.0.5",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Clusters")

DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "predicted.celltype.l1",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Annotation.l1")

DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "predicted.celltype.l2",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Annotation.l2")

DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "predicted.celltype.l3",
label = TRUE,
label.box = TRUE) +
ggtitle("Before Harmony - By Annotation.l3")

table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$SCT_snn_res.0.5)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
B intermediate 0 3 0 0 0 0 2 0 0 0 0 0 2 0
B memory 8 6 1 0 85 0 30 2 0 115 4 0 1 0
CD14 Mono 0 1 0 0 0 0 4 0 0 7 0 0 0 0
CD4 CTL 0 0 0 0 0 12 0 0 0 0 0 0 0 1
CD4 Naive 0 8 0 0 0 517 0 0 1479 0 0 37 0 1
CD4 Proliferating 5448 2474 5388 2852 3954 0 3256 2863 6 1270 1407 0 93 0
CD4 TCM 871 3414 522 269 536 4214 106 29 1838 457 46 425 49 54
CD4 TEM 0 1 0 0 0 61 0 0 21 0 0 1 0 0
CD8 Proliferating 0 0 0 0 1 0 0 0 0 1 0 0 0 0
CD8 TCM 0 1 0 16 0 0 0 0 0 0 0 0 0 0
CD8 TEM 0 1 0 8 3 0 2 0 0 1 0 0 0 0
cDC1 0 0 0 0 5 0 2 0 0 0 0 0 1 0
cDC2 0 1 2 0 3 0 10 0 0 36 0 0 0 1
dnT 0 3 1 1 1 0 2 0 0 3 0 1 3 0
HSPC 57 10 1 0 211 0 678 483 0 5 358 0 2 0
NK Proliferating 4 40 23 2785 237 0 10 12 0 22 1 0 27 0
Treg 15 14 1 0 1 0 0 0 0 0 0 1 13 0
3. Perform Harmony Integration
# Perform Harmony integration
All_samples_Merged <- RunHarmony(All_samples_Merged,
group.by.vars = c("cell_line"),
reduction.use = "pca",
dim.use = 1:15,
theta = c(0.5),
assay.use = "SCT")
Transposing data matrix
Initializing state using k-means centroids initialization
Harmony 1/10
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony 2/10
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Harmony converged after 2 iterations
# Check if Harmony integration ran successfully
print(names(All_samples_Merged@reductions)) # Should include "harmony"
[1] "integrated_dr" "ref.umap" "pca" "umap" "harmony"
# Find neighbors using the Harmony reduction and explicitly name the graph
All_samples_Merged <- FindNeighbors(All_samples_Merged,
reduction = "harmony", # Harmony reduction used
dims = 1:15, # Use first 15 dimensions of the Harmony reduction
graph.name = "harmony_snn") # Explicitly name the graph
Computing nearest neighbor graph
Computing SNN
Only one graph name supplied, storing nearest-neighbor graph only
# Check if the "harmony_snn" graph is present
print(names(All_samples_Merged@graphs)) # Should now include "harmony_snn"
[1] "SCT_nn" "SCT_snn" "harmony_snn"
# Find clusters for each resolution and store them
resolutions <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2)
for (res in resolutions) {
cluster_name <- paste0("harmony_res_", res) # Dynamic cluster name
All_samples_Merged <- FindClusters(
object = All_samples_Merged,
graph.name = "harmony_snn", # Graph created in FindNeighbors
resolution = res, # Resolution for clustering
verbose = FALSE
)
# Add cluster identities to metadata
All_samples_Merged[[cluster_name]] <- Idents(All_samples_Merged)
}
# Run UMAP on the new Harmony reduction
All_samples_Merged <- RunUMAP(All_samples_Merged,
reduction = "harmony",
dims = 1:15)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session18:06:20 UMAP embedding parameters a = 0.9922 b = 1.112
18:06:20 Read 49372 rows and found 15 numeric columns
18:06:20 Using Annoy for neighbor search, n_neighbors = 30
18:06:20 Building Annoy index with metric = cosine, n_trees = 50
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
18:06:23 Writing NN index file to temp file /tmp/RtmpW4aDAH/file1480677f3ac2f
18:06:23 Searching Annoy index using 1 thread, search_k = 3000
18:06:35 Annoy recall = 100%
18:06:36 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
18:06:37 Initializing from normalized Laplacian + noise (using RSpectra)
18:06:39 Commencing optimization for 200 epochs, with 2025940 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
18:06:55 Optimization finished
4. Visualize Harmony Integrated Data
# Visualization after Harmony
# By cell line
p3 <- DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "cell_line",
label = TRUE,
label.box = TRUE) +
ggtitle("After Harmony - By Cell Line")
# By clusters
p4 <- DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "harmony_res_0.7",
label = TRUE,
label.box = TRUE) +
ggtitle("After Harmony - By Clusters")
# By cell type annotations
p5 <- DimPlot(All_samples_Merged,
reduction = "umap",
group.by = "predicted.celltype.l2",
label = TRUE,
label.box = TRUE) +
ggtitle("After Harmony - Cell Type Annotations")
# Print comparison plots
p3 + p4

print(p5)

after <- DimPlot(All_samples_Merged, reduction = "umap", group.by = "cell_line", label = T, label.box = T, repel = T) +
ggtitle("Harmony Integration - By Cell Line")
before|after

DimPlot(All_samples_Merged, reduction = "umap", group.by = "cell_line", label = T, label.box = T, repel = T) +
ggtitle("Harmony Integration - By Cell Line")

DimPlot(All_samples_Merged, reduction = "umap", group.by = "harmony_res_0.7",label = T, label.box = T, repel = T) +
ggtitle("Harmony Integration - By Clusters")

DimPlot(All_samples_Merged, reduction = "umap", group.by = "predicted.celltype.l2",label = T, label.box = T, repel = T) +
ggtitle("Harmony Integration - Annotations")

table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$cell_line)
L1 L2 L3 L4 L5 L6 L7 PBMC PBMC_10x
B intermediate 0 0 2 1 2 2 0 0 0
B memory 0 0 11 1 38 82 120 0 0
CD14 Mono 0 0 1 0 5 0 6 0 0
CD4 CTL 0 0 0 0 0 0 0 12 1
CD4 Naive 0 0 0 7 0 0 0 523 1512
CD4 Proliferating 2461 2852 5452 5391 4732 4002 4115 0 6
CD4 TCM 3320 270 887 562 178 557 517 4576 1963
CD4 TEM 1 0 0 0 0 0 0 60 23
CD8 Proliferating 0 0 0 0 0 1 1 0 0
CD8 TCM 1 16 0 0 0 0 0 0 0
CD8 TEM 1 8 0 0 2 3 1 0 0
cDC1 0 0 0 0 2 6 0 0 0
cDC2 0 0 0 4 11 3 35 0 0
dnT 2 3 0 1 2 5 2 0 0
HSPC 0 0 60 7 1035 213 490 0 0
NK Proliferating 38 2785 6 24 11 259 38 0 0
Treg 1 1 9 9 4 15 6 0 0
table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$harmony_res_0.7)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
B intermediate 0 0 0 0 0 0 0 2 1 1 0 3 0 0
B memory 3 0 6 0 0 6 0 19 8 151 0 59 0 0
CD14 Mono 0 0 0 0 0 0 0 0 0 11 0 0 0 1
CD4 CTL 0 8 0 2 0 0 0 1 1 0 0 0 0 1
CD4 Naive 0 1317 0 2 0 0 0 8 32 0 660 0 22 1
CD4 Proliferating 5149 22 5156 2527 5181 2848 3341 880 1875 1020 0 886 126 0
CD4 TCM 134 4870 944 109 63 40 17 2455 1384 1458 917 207 178 54
CD4 TEM 0 79 0 1 0 0 0 0 4 0 0 0 0 0
CD8 Proliferating 0 0 0 0 0 0 0 0 0 1 0 1 0 0
CD8 TCM 0 0 0 4 0 0 0 13 0 0 0 0 0 0
CD8 TEM 0 0 0 1 0 0 0 4 1 6 0 0 3 0
cDC1 0 0 0 0 0 0 1 0 0 2 0 4 1 0
cDC2 2 0 0 0 0 1 0 0 0 44 0 4 0 2
dnT 0 0 0 0 0 0 0 0 2 7 0 0 6 0
HSPC 986 0 32 0 24 660 10 17 7 28 0 38 3 0
NK Proliferating 115 4 0 2748 25 7 144 6 66 4 0 11 31 0
Treg 0 0 0 0 1 0 0 2 17 1 0 0 24 0
Visualize Harmony Integrated Data distribution
table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$cell_line)
L1 L2 L3 L4 L5 L6 L7 PBMC PBMC_10x
B intermediate 0 0 2 1 2 2 0 0 0
B memory 0 0 11 1 38 82 120 0 0
CD14 Mono 0 0 1 0 5 0 6 0 0
CD4 CTL 0 0 0 0 0 0 0 12 1
CD4 Naive 0 0 0 7 0 0 0 523 1512
CD4 Proliferating 2461 2852 5452 5391 4732 4002 4115 0 6
CD4 TCM 3320 270 887 562 178 557 517 4576 1963
CD4 TEM 1 0 0 0 0 0 0 60 23
CD8 Proliferating 0 0 0 0 0 1 1 0 0
CD8 TCM 1 16 0 0 0 0 0 0 0
CD8 TEM 1 8 0 0 2 3 1 0 0
cDC1 0 0 0 0 2 6 0 0 0
cDC2 0 0 0 4 11 3 35 0 0
dnT 2 3 0 1 2 5 2 0 0
HSPC 0 0 60 7 1035 213 490 0 0
NK Proliferating 38 2785 6 24 11 259 38 0 0
Treg 1 1 9 9 4 15 6 0 0
table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$harmony_res_0.7)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
B intermediate 0 0 0 0 0 0 0 2 1 1 0 3 0 0
B memory 3 0 6 0 0 6 0 19 8 151 0 59 0 0
CD14 Mono 0 0 0 0 0 0 0 0 0 11 0 0 0 1
CD4 CTL 0 8 0 2 0 0 0 1 1 0 0 0 0 1
CD4 Naive 0 1317 0 2 0 0 0 8 32 0 660 0 22 1
CD4 Proliferating 5149 22 5156 2527 5181 2848 3341 880 1875 1020 0 886 126 0
CD4 TCM 134 4870 944 109 63 40 17 2455 1384 1458 917 207 178 54
CD4 TEM 0 79 0 1 0 0 0 0 4 0 0 0 0 0
CD8 Proliferating 0 0 0 0 0 0 0 0 0 1 0 1 0 0
CD8 TCM 0 0 0 4 0 0 0 13 0 0 0 0 0 0
CD8 TEM 0 0 0 1 0 0 0 4 1 6 0 0 3 0
cDC1 0 0 0 0 0 0 1 0 0 2 0 4 1 0
cDC2 2 0 0 0 0 1 0 0 0 44 0 4 0 2
dnT 0 0 0 0 0 0 0 0 2 7 0 0 6 0
HSPC 986 0 32 0 24 660 10 17 7 28 0 38 3 0
NK Proliferating 115 4 0 2748 25 7 144 6 66 4 0 11 31 0
Treg 0 0 0 0 1 0 0 2 17 1 0 0 24 0
table(All_samples_Merged$cell_line, All_samples_Merged$harmony_res_0.7)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
L1 0 14 84 12 29 1 342 2333 2614 372 0 2 22 0
L2 0 5 0 5362 0 0 25 476 55 2 0 0 10 0
L3 0 0 3695 0 2379 0 5 181 20 15 0 77 55 1
L4 0 0 2348 0 2885 0 12 100 12 385 0 251 12 2
L5 1758 0 7 0 0 3224 340 104 35 240 0 304 10 0
L6 1981 1 1 0 0 109 1626 73 61 714 0 459 123 0
L7 2649 0 3 0 1 228 1163 100 70 992 0 105 20 0
PBMC 0 3928 0 20 0 0 0 34 458 12 619 15 51 34
PBMC_10x 1 2352 0 0 0 0 0 6 73 2 958 0 91 22
5. Marker Gene Visualization
# Set marker genes specific to requested immune cell types
myfeatures1 <- c("CD19", "CD79A", "MS4A1", # B cells
"CD14", "LYZ", "FCGR3A", # Monocytes
"CSF1R", "CD68", # Macrophages
"NKG7", "GNLY", "KIR3DL1", # NK cells
"MKI67", # Proliferating NK cells
"CD34", "KIT", # HSPCs
"CD3E", "CCR7", # T cells
"SELL", "CD45RO", # Tnaive, Tcm
"CD44", "CD45RA") # Tem, Temra
cd4_feature_plot1 <- FeaturePlot(
All_samples_Merged,
features = myfeatures1,
reduction = "umap",
ncol = 4
) +
ggtitle("CD4 T Cell Marker Expression - Harmony Integration") +
NoLegend()
Warning: Could not find CD45RO in the default search locations, found in 'ADT' assay insteadWarning: Could not find CD45RA in the default search locations, found in 'ADT' assay instead
# Display the plot
print(cd4_feature_plot1)

# Define markers specific to CD4 T cells and their subsets
cd4_markers <- c(
"CD4", # General CD4 T cells
"IL7R", # Naive T cells
"CCR7", # T central memory (Tcm) cells
"SELL", # T naive cells
"FOXP3", # Regulatory T cells (Tregs)
"IL2RA", # Activated T cells
"PDCD1", # Exhausted T cells
"LAG3", # Exhausted T cells
"TIGIT", # Exhausted T cells
"GATA3", # Th2 cells
"TBX21", # Th1 cells
"RORC", # Th17 cells
"BCL6" # T follicular helper (Tfh) cells
)
# Visualize marker genes for CD4 T cells
cd4_feature_plot2 <- FeaturePlot(
All_samples_Merged,
features = cd4_markers,
reduction = "umap",
ncol = 4
) +
ggtitle("CD4 T Cell Marker Expression - Harmony Integration") +
NoLegend()
# Display the plot
print(cd4_feature_plot2)

CD4 T Cell Marker Visualization
# Set marker genes specific to CD4 T cell biology and states
cd4_markers <- c(
# Core T cell markers
"CD3E", # T cell marker
"CD4", # CD4 T cell marker
# Naive/Memory markers
"CCR7", # Naive/Central memory
"SELL", # L-selectin, naive marker
"CD27", # Memory marker
"IL7R", # Naive/Memory marker
# Activation/State markers
"IL2RA", # CD25, activation marker
"CD69", # Early activation
"HLA-DRA", # Activation marker
# Exhaustion markers
"PDCD1", # PD-1
"LAG3", # Exhaustion marker
"TIGIT", # Exhaustion marker
# Regulatory T cell markers
"FOXP3", # Treg marker
"IL2RA", # CD25, Treg marker
"CTLA4", # Treg/exhaustion marker
# Effector/Function markers
"IL2", # T cell function
"IFNG", # Th1
"IL4", # Th2
"IL13", # Th2
"IL17A" # Th17
)
# Create feature plots with better visualization
FeaturePlot(All_samples_Merged,
features = cd4_markers,
reduction = "umap",
ncol = 4,
pt.size = 0.1, # Smaller point size for better resolution
min.cutoff = "q1", # Remove bottom 1% of expression
max.cutoff = "q99", # Remove top 1% of expression
order = TRUE) + # Plot highest expressing cells on top
ggtitle("CD4 T Cell Marker Expression - Harmony Integration") +
theme(plot.title = element_text(size = 16, face = "bold")) +
NoLegend()

# Optional: Add violin plots to see expression distribution across clusters
VlnPlot(All_samples_Merged,
features = cd4_markers[1:20], # First 8 markers
stack = TRUE,
flip = TRUE) +
ggtitle("CD4 T Cell Marker Distribution Across Clusters")

NA
NA
6. Save the Seurat object as an Robj file
#save(All_samples_Merged, file = "../0-R_Objects/CD4Tcells_harmony_integrated_0.5_theta_patientorigin_cell_line.Robj")
LS0tCnRpdGxlOiAiSGFybW9ueSBpbnRlZ3JhdGlvbnMgb2YgUEJNQzEweCBieSBjZWxsX2xpbmUtdGhldGEtMC41IGJvdGgiCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKCiMgMS4gbG9hZCBsaWJyYXJpZXMKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KFNldXJhdFdyYXBwZXJzKQpsaWJyYXJ5KFNldXJhdE9iamVjdCkKbGlicmFyeShTZXVyYXREYXRhKQpsaWJyYXJ5KHBhdGNod29yaykKbGlicmFyeShoYXJtb255KQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkocmV0aWN1bGF0ZSkKbGlicmFyeShBemltdXRoKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KFJ0c25lKQpsaWJyYXJ5KGhhcm1vbnkpCgoKYGBgCgoKCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3IgbG9hZF9zZXVyYXQsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKI0xvYWQgU2V1cmF0IE9iamVjdCBtZXJnZWQgZnJvbSBjZWxsIGxpbmVzIGFuZCBhIGNvbnRyb2wgYWZ0ZXIgZmlsdHJhdGlvbgpsb2FkKCIuLi8yMi1TZXVyYXRfSW50ZWdyYXRlLzAtUl9PYmplY3RzL0NENFRjZWxsc19TQ1Rub3JtYWxpemVkX2RvbmVfb25fSFBDX2lubHVkaW5nX1BhdGllbnRfb3JpZ2luLnJvYmoiKQoKCgojIFZpc3VhbGl6ZSBiZWZvcmUgSGFybW9ueSBpbnRlZ3JhdGlvbgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgICBncm91cC5ieSA9ICJQYXRpZW50X29yaWdpbiIsCiAgICAgICAgICAgICAgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICBsYWJlbC5ib3ggPSBUUlVFKSArIAogICAgICBnZ3RpdGxlKCJCZWZvcmUgSGFybW9ueSAtIEJ5IENlbGwgTGluZSIpCgoKYmVmb3JlIDwtIERpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICAgIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsCiAgICAgICAgICAgICAgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICBsYWJlbC5ib3ggPSBUUlVFKSArIAogICAgICBnZ3RpdGxlKCJCZWZvcmUgSGFybW9ueSAtIEJ5IENlbGwgTGluZSIpCgoKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIiwKICAgICAgICAgICAgICBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIGxhYmVsLmJveCA9IFRSVUUpICsgCiAgICAgIGdndGl0bGUoIkJlZm9yZSBIYXJtb255IC0gQnkgQ2VsbCBMaW5lIikKCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjUiLAogICAgICAgICAgICAgIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgbGFiZWwuYm94ID0gVFJVRSkgKyAKICAgICAgZ2d0aXRsZSgiQmVmb3JlIEhhcm1vbnkgLSBCeSBDbHVzdGVycyIpCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgICBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDEiLAogICAgICAgICAgICAgIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgbGFiZWwuYm94ID0gVFJVRSkgKyAKICAgICAgZ2d0aXRsZSgiQmVmb3JlIEhhcm1vbnkgLSBCeSBBbm5vdGF0aW9uLmwxIikKCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgICBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLAogICAgICAgICAgICAgIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgbGFiZWwuYm94ID0gVFJVRSkgKyAKICAgICAgZ2d0aXRsZSgiQmVmb3JlIEhhcm1vbnkgLSBCeSBBbm5vdGF0aW9uLmwyIikKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICAgIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMyIsCiAgICAgICAgICAgICAgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICBsYWJlbC5ib3ggPSBUUlVFKSArIAogICAgICBnZ3RpdGxlKCJCZWZvcmUgSGFybW9ueSAtIEJ5IEFubm90YXRpb24ubDMiKQoKCnRhYmxlKEFsbF9zYW1wbGVzX01lcmdlZCRwcmVkaWN0ZWQuY2VsbHR5cGUubDIsIEFsbF9zYW1wbGVzX01lcmdlZCRTQ1Rfc25uX3Jlcy4wLjUpCgoKYGBgCgoKIyAzLiAgUGVyZm9ybSBIYXJtb255IEludGVncmF0aW9uCmBgYHtyIGhhcm1vbnktaW50ZWdyYXRpb24sIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQoKIyBQZXJmb3JtIEhhcm1vbnkgaW50ZWdyYXRpb24KQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIFJ1bkhhcm1vbnkoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZ3JvdXAuYnkudmFycyA9IGMoImNlbGxfbGluZSIpLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVkdWN0aW9uLnVzZSA9ICJwY2EiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGltLnVzZSA9IDE6MTUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRoZXRhID0gYygwLjUpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhc3NheS51c2UgPSAiU0NUIikKCiMgQ2hlY2sgaWYgSGFybW9ueSBpbnRlZ3JhdGlvbiByYW4gc3VjY2Vzc2Z1bGx5CnByaW50KG5hbWVzKEFsbF9zYW1wbGVzX01lcmdlZEByZWR1Y3Rpb25zKSkgICMgU2hvdWxkIGluY2x1ZGUgImhhcm1vbnkiCgojIEZpbmQgbmVpZ2hib3JzIHVzaW5nIHRoZSBIYXJtb255IHJlZHVjdGlvbiBhbmQgZXhwbGljaXRseSBuYW1lIHRoZSBncmFwaApBbGxfc2FtcGxlc19NZXJnZWQgPC0gRmluZE5laWdoYm9ycyhBbGxfc2FtcGxlc19NZXJnZWQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJoYXJtb255IiwgICAjIEhhcm1vbnkgcmVkdWN0aW9uIHVzZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGltcyA9IDE6MTUsICAgICAgICAgICAgICMgVXNlIGZpcnN0IDE1IGRpbWVuc2lvbnMgb2YgdGhlIEhhcm1vbnkgcmVkdWN0aW9uCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdyYXBoLm5hbWUgPSAiaGFybW9ueV9zbm4iKSAgIyBFeHBsaWNpdGx5IG5hbWUgdGhlIGdyYXBoCgojIENoZWNrIGlmIHRoZSAiaGFybW9ueV9zbm4iIGdyYXBoIGlzIHByZXNlbnQKcHJpbnQobmFtZXMoQWxsX3NhbXBsZXNfTWVyZ2VkQGdyYXBocykpICAjIFNob3VsZCBub3cgaW5jbHVkZSAiaGFybW9ueV9zbm4iCgoKIyBGaW5kIGNsdXN0ZXJzIGZvciBlYWNoIHJlc29sdXRpb24gYW5kIHN0b3JlIHRoZW0KcmVzb2x1dGlvbnMgPC0gYygwLjEsIDAuMiwgMC4zLCAwLjQsIDAuNSwgMC42LCAwLjcsIDAuOCwgMC45LCAxLCAxLjIpCmZvciAocmVzIGluIHJlc29sdXRpb25zKSB7CiAgY2x1c3Rlcl9uYW1lIDwtIHBhc3RlMCgiaGFybW9ueV9yZXNfIiwgcmVzKSAgIyBEeW5hbWljIGNsdXN0ZXIgbmFtZQogIEFsbF9zYW1wbGVzX01lcmdlZCA8LSBGaW5kQ2x1c3RlcnMoCiAgICBvYmplY3QgPSBBbGxfc2FtcGxlc19NZXJnZWQsCiAgICBncmFwaC5uYW1lID0gImhhcm1vbnlfc25uIiwgICAgICAgICAgICAgICAjIEdyYXBoIGNyZWF0ZWQgaW4gRmluZE5laWdoYm9ycwogICAgcmVzb2x1dGlvbiA9IHJlcywgICAgICAgICAgICAgICAgICAgICAgICAgIyBSZXNvbHV0aW9uIGZvciBjbHVzdGVyaW5nCiAgICB2ZXJib3NlID0gRkFMU0UKICApCiAgIyBBZGQgY2x1c3RlciBpZGVudGl0aWVzIHRvIG1ldGFkYXRhCiAgQWxsX3NhbXBsZXNfTWVyZ2VkW1tjbHVzdGVyX25hbWVdXSA8LSBJZGVudHMoQWxsX3NhbXBsZXNfTWVyZ2VkKQp9CgojIFJ1biBVTUFQIG9uIHRoZSBuZXcgSGFybW9ueSByZWR1Y3Rpb24KQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIFJ1blVNQVAoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVkdWN0aW9uID0gImhhcm1vbnkiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGltcyA9IDE6MTUpCgoKYGBgCgojIDQuICBWaXN1YWxpemUgSGFybW9ueSBJbnRlZ3JhdGVkIERhdGEKYGBge3IgaGFybW9ueS12aXN1YWxpemF0aW9uMSwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgojIFZpc3VhbGl6YXRpb24gYWZ0ZXIgSGFybW9ueQoKIyBCeSBjZWxsIGxpbmUKcDMgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIiwKICAgICAgICAgICAgICBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIGxhYmVsLmJveCA9IFRSVUUpICsgCiAgICAgIGdndGl0bGUoIkFmdGVyIEhhcm1vbnkgLSBCeSBDZWxsIExpbmUiKQoKIyBCeSBjbHVzdGVycwpwNCA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLCAKICAgICAgICAgICAgICBncm91cC5ieSA9ICJoYXJtb255X3Jlc18wLjciLAogICAgICAgICAgICAgIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgbGFiZWwuYm94ID0gVFJVRSkgKyAKICAgICAgZ2d0aXRsZSgiQWZ0ZXIgSGFybW9ueSAtIEJ5IENsdXN0ZXJzIikKCiMgQnkgY2VsbCB0eXBlIGFubm90YXRpb25zCnA1IDwtIERpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICAgIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIsCiAgICAgICAgICAgICAgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICBsYWJlbC5ib3ggPSBUUlVFKSArIAogICAgICBnZ3RpdGxlKCJBZnRlciBIYXJtb255IC0gQ2VsbCBUeXBlIEFubm90YXRpb25zIikKCiMgUHJpbnQgY29tcGFyaXNvbiBwbG90cwpwMyArIHA0CnByaW50KHA1KQoKYWZ0ZXIgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICJ1bWFwIiwgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIiwgbGFiZWwgPSBULCBsYWJlbC5ib3ggPSBULCByZXBlbCA9IFQpICsgCiAgZ2d0aXRsZSgiSGFybW9ueSBJbnRlZ3JhdGlvbiAtIEJ5IENlbGwgTGluZSIpCgpiZWZvcmV8YWZ0ZXIKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAidW1hcCIsIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsIGxhYmVsID0gVCwgbGFiZWwuYm94ID0gVCwgcmVwZWwgPSBUKSArIAogIGdndGl0bGUoIkhhcm1vbnkgSW50ZWdyYXRpb24gLSBCeSBDZWxsIExpbmUiKQpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gInVtYXAiLCBncm91cC5ieSA9ICJoYXJtb255X3Jlc18wLjciLGxhYmVsID0gVCwgbGFiZWwuYm94ID0gVCwgcmVwZWwgPSBUKSArIAogIGdndGl0bGUoIkhhcm1vbnkgSW50ZWdyYXRpb24gLSBCeSBDbHVzdGVycyIpCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAidW1hcCIsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIsbGFiZWwgPSBULCBsYWJlbC5ib3ggPSBULCByZXBlbCA9IFQpICsgCiAgZ2d0aXRsZSgiSGFybW9ueSBJbnRlZ3JhdGlvbiAtIEFubm90YXRpb25zIikKCnRhYmxlKEFsbF9zYW1wbGVzX01lcmdlZCRwcmVkaWN0ZWQuY2VsbHR5cGUubDIsIEFsbF9zYW1wbGVzX01lcmdlZCRjZWxsX2xpbmUpCgp0YWJsZShBbGxfc2FtcGxlc19NZXJnZWQkcHJlZGljdGVkLmNlbGx0eXBlLmwyLCBBbGxfc2FtcGxlc19NZXJnZWQkaGFybW9ueV9yZXNfMC43KQoKYGBgCgojIyAgVmlzdWFsaXplIEhhcm1vbnkgSW50ZWdyYXRlZCBEYXRhIGRpc3RyaWJ1dGlvbgpgYGB7ciBoYXJtb255LXRhYmxlcywgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgoKdGFibGUoQWxsX3NhbXBsZXNfTWVyZ2VkJHByZWRpY3RlZC5jZWxsdHlwZS5sMiwgQWxsX3NhbXBsZXNfTWVyZ2VkJGNlbGxfbGluZSkKCnRhYmxlKEFsbF9zYW1wbGVzX01lcmdlZCRwcmVkaWN0ZWQuY2VsbHR5cGUubDIsIEFsbF9zYW1wbGVzX01lcmdlZCRoYXJtb255X3Jlc18wLjcpCgp0YWJsZShBbGxfc2FtcGxlc19NZXJnZWQkY2VsbF9saW5lLCBBbGxfc2FtcGxlc19NZXJnZWQkaGFybW9ueV9yZXNfMC43KQoKYGBgCiMgNS4gIE1hcmtlciBHZW5lIFZpc3VhbGl6YXRpb24KYGBge3IgZmVhdHVyZXBsb3QtaGFybW9ueTEsIGZpZy5oZWlnaHQ9MTQsIGZpZy53aWR0aD0xOH0KCgojIFNldCBtYXJrZXIgZ2VuZXMgc3BlY2lmaWMgdG8gcmVxdWVzdGVkIGltbXVuZSBjZWxsIHR5cGVzCm15ZmVhdHVyZXMxIDwtIGMoIkNEMTkiLCAiQ0Q3OUEiLCAiTVM0QTEiLCAjIEIgY2VsbHMKICAgICAgICAgICAgICAgICJDRDE0IiwgIkxZWiIsICJGQ0dSM0EiLCAjIE1vbm9jeXRlcwogICAgICAgICAgICAgICAgIkNTRjFSIiwgIkNENjgiLCAjIE1hY3JvcGhhZ2VzCiAgICAgICAgICAgICAgICAiTktHNyIsICJHTkxZIiwgIktJUjNETDEiLCAjIE5LIGNlbGxzCiAgICAgICAgICAgICAgICAiTUtJNjciLCAjIFByb2xpZmVyYXRpbmcgTksgY2VsbHMKICAgICAgICAgICAgICAgICJDRDM0IiwgIktJVCIsICMgSFNQQ3MKICAgICAgICAgICAgICAgICJDRDNFIiwgIkNDUjciLCAjIFQgY2VsbHMKICAgICAgICAgICAgICAgICJTRUxMIiwgIkNENDVSTyIsICMgVG5haXZlLCBUY20KICAgICAgICAgICAgICAgICJDRDQ0IiwgIkNENDVSQSIpICMgVGVtLCBUZW1yYQoKY2Q0X2ZlYXR1cmVfcGxvdDEgPC0gRmVhdHVyZVBsb3QoCiAgQWxsX3NhbXBsZXNfTWVyZ2VkLCAKICBmZWF0dXJlcyA9IG15ZmVhdHVyZXMxLCAKICByZWR1Y3Rpb24gPSAidW1hcCIsIAogIG5jb2wgPSA0CikgKyAKICBnZ3RpdGxlKCJDRDQgVCBDZWxsIE1hcmtlciBFeHByZXNzaW9uIC0gSGFybW9ueSBJbnRlZ3JhdGlvbiIpICsKICBOb0xlZ2VuZCgpCgojIERpc3BsYXkgdGhlIHBsb3QKcHJpbnQoY2Q0X2ZlYXR1cmVfcGxvdDEpCgojIERlZmluZSBtYXJrZXJzIHNwZWNpZmljIHRvIENENCBUIGNlbGxzIGFuZCB0aGVpciBzdWJzZXRzCmNkNF9tYXJrZXJzIDwtIGMoCiAgIkNENCIsICAgICAgICAgICMgR2VuZXJhbCBDRDQgVCBjZWxscwogICJJTDdSIiwgICAgICAgICAjIE5haXZlIFQgY2VsbHMKICAiQ0NSNyIsICAgICAgICAgIyBUIGNlbnRyYWwgbWVtb3J5IChUY20pIGNlbGxzCiAgIlNFTEwiLCAgICAgICAgICMgVCBuYWl2ZSBjZWxscwogICJGT1hQMyIsICAgICAgICAjIFJlZ3VsYXRvcnkgVCBjZWxscyAoVHJlZ3MpCiAgIklMMlJBIiwgICAgICAgICMgQWN0aXZhdGVkIFQgY2VsbHMKICAiUERDRDEiLCAgICAgICAgIyBFeGhhdXN0ZWQgVCBjZWxscwogICJMQUczIiwgICAgICAgICAjIEV4aGF1c3RlZCBUIGNlbGxzCiAgIlRJR0lUIiwgICAgICAgICMgRXhoYXVzdGVkIFQgY2VsbHMKICAiR0FUQTMiLCAgICAgICAgIyBUaDIgY2VsbHMKICAiVEJYMjEiLCAgICAgICAgIyBUaDEgY2VsbHMKICAiUk9SQyIsICAgICAgICAgIyBUaDE3IGNlbGxzCiAgIkJDTDYiICAgICAgICAgICMgVCBmb2xsaWN1bGFyIGhlbHBlciAoVGZoKSBjZWxscwopCgojIFZpc3VhbGl6ZSBtYXJrZXIgZ2VuZXMgZm9yIENENCBUIGNlbGxzCmNkNF9mZWF0dXJlX3Bsb3QyIDwtIEZlYXR1cmVQbG90KAogIEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgZmVhdHVyZXMgPSBjZDRfbWFya2VycywgCiAgcmVkdWN0aW9uID0gInVtYXAiLCAKICBuY29sID0gNAopICsgCiAgZ2d0aXRsZSgiQ0Q0IFQgQ2VsbCBNYXJrZXIgRXhwcmVzc2lvbiAtIEhhcm1vbnkgSW50ZWdyYXRpb24iKSArCiAgTm9MZWdlbmQoKQoKIyBEaXNwbGF5IHRoZSBwbG90CnByaW50KGNkNF9mZWF0dXJlX3Bsb3QyKQpgYGAKCiMjICBDRDQgVCBDZWxsIE1hcmtlciBWaXN1YWxpemF0aW9uCmBgYHtyIGZlYXR1cmVwbG90LWhhcm1vbnkyLCBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9MTZ9CiMgU2V0IG1hcmtlciBnZW5lcyBzcGVjaWZpYyB0byBDRDQgVCBjZWxsIGJpb2xvZ3kgYW5kIHN0YXRlcwpjZDRfbWFya2VycyA8LSBjKAogICAgIyBDb3JlIFQgY2VsbCBtYXJrZXJzCiAgICAiQ0QzRSIsICAgICAjIFQgY2VsbCBtYXJrZXIKICAgICJDRDQiLCAgICAgICMgQ0Q0IFQgY2VsbCBtYXJrZXIKICAgIAogICAgIyBOYWl2ZS9NZW1vcnkgbWFya2VycwogICAgIkNDUjciLCAgICAgIyBOYWl2ZS9DZW50cmFsIG1lbW9yeQogICAgIlNFTEwiLCAgICAgIyBMLXNlbGVjdGluLCBuYWl2ZSBtYXJrZXIKICAgICJDRDI3IiwgICAgICMgTWVtb3J5IG1hcmtlcgogICAgIklMN1IiLCAgICAgIyBOYWl2ZS9NZW1vcnkgbWFya2VyCiAgICAKICAgICMgQWN0aXZhdGlvbi9TdGF0ZSBtYXJrZXJzCiAgICAiSUwyUkEiLCAgICAjIENEMjUsIGFjdGl2YXRpb24gbWFya2VyCiAgICAiQ0Q2OSIsICAgICAjIEVhcmx5IGFjdGl2YXRpb24KICAgICJITEEtRFJBIiwgICMgQWN0aXZhdGlvbiBtYXJrZXIKICAgIAogICAgIyBFeGhhdXN0aW9uIG1hcmtlcnMKICAgICJQRENEMSIsICAgICMgUEQtMQogICAgIkxBRzMiLCAgICAgIyBFeGhhdXN0aW9uIG1hcmtlcgogICAgIlRJR0lUIiwgICAgIyBFeGhhdXN0aW9uIG1hcmtlcgogICAgCiAgICAjIFJlZ3VsYXRvcnkgVCBjZWxsIG1hcmtlcnMKICAgICJGT1hQMyIsICAgICMgVHJlZyBtYXJrZXIKICAgICJJTDJSQSIsICAgICMgQ0QyNSwgVHJlZyBtYXJrZXIKICAgICJDVExBNCIsICAgICMgVHJlZy9leGhhdXN0aW9uIG1hcmtlcgogICAgCiAgICAjIEVmZmVjdG9yL0Z1bmN0aW9uIG1hcmtlcnMKICAgICJJTDIiLCAgICAgICMgVCBjZWxsIGZ1bmN0aW9uCiAgICAiSUZORyIsICAgICAjIFRoMQogICAgIklMNCIsICAgICAgIyBUaDIKICAgICJJTDEzIiwgICAgICMgVGgyCiAgICAiSUwxN0EiICAgICAjIFRoMTcKKQoKIyBDcmVhdGUgZmVhdHVyZSBwbG90cyB3aXRoIGJldHRlciB2aXN1YWxpemF0aW9uCkZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgICAgIGZlYXR1cmVzID0gY2Q0X21hcmtlcnMsIAogICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICBuY29sID0gNCwKICAgICAgICAgICAgcHQuc2l6ZSA9IDAuMSwgICAgICAgICAgICMgU21hbGxlciBwb2ludCBzaXplIGZvciBiZXR0ZXIgcmVzb2x1dGlvbgogICAgICAgICAgICBtaW4uY3V0b2ZmID0gInExIiwgICAgICAgIyBSZW1vdmUgYm90dG9tIDElIG9mIGV4cHJlc3Npb24KICAgICAgICAgICAgbWF4LmN1dG9mZiA9ICJxOTkiLCAgICAgICMgUmVtb3ZlIHRvcCAxJSBvZiBleHByZXNzaW9uCiAgICAgICAgICAgIG9yZGVyID0gVFJVRSkgKyAgICAgICAgICAjIFBsb3QgaGlnaGVzdCBleHByZXNzaW5nIGNlbGxzIG9uIHRvcAogICAgZ2d0aXRsZSgiQ0Q0IFQgQ2VsbCBNYXJrZXIgRXhwcmVzc2lvbiAtIEhhcm1vbnkgSW50ZWdyYXRpb24iKSArCiAgICB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNiwgZmFjZSA9ICJib2xkIikpICsKICAgIE5vTGVnZW5kKCkKCiMgT3B0aW9uYWw6IEFkZCB2aW9saW4gcGxvdHMgdG8gc2VlIGV4cHJlc3Npb24gZGlzdHJpYnV0aW9uIGFjcm9zcyBjbHVzdGVycwpWbG5QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgCiAgICAgICAgZmVhdHVyZXMgPSBjZDRfbWFya2Vyc1sxOjIwXSwgIyBGaXJzdCA4IG1hcmtlcnMKICAgICAgICBzdGFjayA9IFRSVUUsCiAgICAgICAgZmxpcCA9IFRSVUUpICsKICAgICAgICBnZ3RpdGxlKCJDRDQgVCBDZWxsIE1hcmtlciBEaXN0cmlidXRpb24gQWNyb3NzIENsdXN0ZXJzIikKCgpgYGAKCgojIDYuIFNhdmUgdGhlIFNldXJhdCBvYmplY3QgYXMgYW4gUm9iaiBmaWxlCmBgYHtyIHNhdmVST0JKfQoKI3NhdmUoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmaWxlID0gIi4uLzAtUl9PYmplY3RzL0NENFRjZWxsc19oYXJtb255X2ludGVncmF0ZWRfMC41X3RoZXRhX3BhdGllbnRvcmlnaW5fY2VsbF9saW5lLlJvYmoiKQoKYGBgCgoKCgo=