This gives us final Municipality-Level metrics that represent the typical performance across all cohorts.
Then, scatter plot with regression line showing relationship between initial scores (x-axis) and gains (y-axis), with residuals indicating which municipality over/under-performed versus predictions.
## Correlation between 5th Grade and Dropout Rate: -0.21
## Correlation between Gain and Dropout Rate: 0.18
## R2 Without drop out 0.3559526
## R2 with drop out 0.3589996
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_math_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -119.673 -8.768 -0.349 8.434 108.192
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 180.77489 3.51729 51.396 < 2e-16 ***
## avg_municipality_math_5th -0.68169 0.01689 -40.349 < 2e-16 ***
## avg_drop_out_rate 12.00428 3.07744 3.901 9.79e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.5 on 3201 degrees of freedom
## Multiple R-squared: 0.359, Adjusted R-squared: 0.3586
## F-statistic: 896.4 on 2 and 3201 DF, p-value: < 2.2e-16
## # A tibble: 3,204 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_math…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 49.2 192. 0.222
## 2 1100023 58.4 189. 0.252
## 3 1100031 62.1 194. 0.200
## 4 1100049 59.3 193. 0.155
## 5 1100056 44.0 207. 0.203
## 6 1100064 42.2 204. 0.111
## 7 1100072 69.0 177. 0.223
## 8 1100080 38.6 195. 0.203
## 9 1100098 60.9 206. 0.212
## 10 1100106 43.7 193. 0.226
## # ℹ 3,194 more rows
## # ℹ abbreviated name: ¹avg_municipality_math_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.17
## Correlation between Gain and Dropout Rate: 0.17
## R2 Without drop out 0.2621545
## R2 with drop out 0.2682422
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_leitura_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -108.244 -8.743 -0.045 9.050 105.892
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 173.80893 3.68688 47.14 < 2e-16 ***
## avg_municipality_leitura_5th -0.64324 0.01982 -32.46 < 2e-16 ***
## avg_drop_out_rate 16.04155 3.10857 5.16 2.61e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.81 on 3201 degrees of freedom
## Multiple R-squared: 0.2682, Adjusted R-squared: 0.2678
## F-statistic: 586.7 on 2 and 3201 DF, p-value: < 2.2e-16
## # A tibble: 3,204 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_leit…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 69.9 161. 0.222
## 2 1100023 69.8 172. 0.252
## 3 1100031 62.3 172. 0.200
## 4 1100049 67.3 178. 0.155
## 5 1100056 54.8 182. 0.203
## 6 1100064 51.5 184. 0.111
## 7 1100072 80.7 160. 0.223
## 8 1100080 89.9 171. 0.203
## 9 1100098 68.6 183. 0.212
## 10 1100106 63.6 173. 0.226
## # ℹ 3,194 more rows
## # ℹ abbreviated name: ¹avg_municipality_leitura_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.3
## Correlation between Gain and Dropout Rate: 0.11
## R2 Without drop out 0.3466142
## R2 with drop out 0.3507156
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_math_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -72.661 -9.251 -0.510 8.109 104.192
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 163.1157 2.8675 56.885 < 2e-16 ***
## avg_municipality_math_5th -0.5872 0.0145 -40.503 < 2e-16 ***
## avg_drop_out_rate -9.4700 2.1216 -4.464 8.34e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.51 on 3154 degrees of freedom
## Multiple R-squared: 0.3507, Adjusted R-squared: 0.3503
## F-statistic: 851.8 on 2 and 3154 DF, p-value: < 2.2e-16
## # A tibble: 3,157 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_math…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 58.3 181. 0.315
## 2 1100072 68.8 183. 0.220
## 3 1100080 58.5 179. 0.292
## 4 1100098 61.5 195. 0.173
## 5 1100130 55.2 192. 0.399
## 6 1100148 63.8 203. 0.313
## 7 1100262 63.1 182. 0.281
## 8 1100296 77.8 184. 0.334
## 9 1100320 51.0 184. 0.151
## 10 1100338 59.9 188. 0.375
## # ℹ 3,147 more rows
## # ℹ abbreviated name: ¹avg_municipality_math_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.3
## Correlation between Gain and Dropout Rate: 0.15
## R2 Without drop out 0.2813124
## R2 with drop out 0.2813688
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_leitura_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -109.263 -8.411 0.025 8.618 89.068
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 158.61562 2.99048 53.040 <2e-16 ***
## avg_municipality_leitura_5th -0.56614 0.01682 -33.666 <2e-16 ***
## avg_drop_out_rate -1.04697 2.10527 -0.497 0.619
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.39 on 3154 degrees of freedom
## Multiple R-squared: 0.2814, Adjusted R-squared: 0.2809
## F-statistic: 617.4 on 2 and 3154 DF, p-value: < 2.2e-16
## # A tibble: 3,157 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_leit…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 71.5 157. 0.315
## 2 1100072 87.1 155. 0.220
## 3 1100080 67.5 156. 0.292
## 4 1100098 72.9 180. 0.173
## 5 1100130 75.1 169. 0.399
## 6 1100148 71.1 183. 0.313
## 7 1100262 81.8 168. 0.281
## 8 1100296 81.9 155. 0.334
## 9 1100320 65.7 167. 0.151
## 10 1100338 63.5 168. 0.375
## # ℹ 3,147 more rows
## # ℹ abbreviated name: ¹avg_municipality_leitura_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.28
## Correlation between Gain and Dropout Rate: 0.25
## R2 Without drop out 0.3366747
## R2 with drop out 0.3453524
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_math_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -77.901 -6.621 -0.381 6.134 68.114
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 132.93820 2.58770 51.373 < 2e-16 ***
## avg_municipality_math_5th -0.41282 0.01125 -36.697 < 2e-16 ***
## avg_drop_out_rate 12.99287 2.02036 6.431 1.46e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.03 on 3120 degrees of freedom
## Multiple R-squared: 0.3454, Adjusted R-squared: 0.3449
## F-statistic: 823 on 2 and 3120 DF, p-value: < 2.2e-16
## # A tibble: 3,123 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_math…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 47.8 204. 0.251
## 2 1100023 59.9 198. 0.252
## 3 1100031 38.6 203. 0.200
## 4 1100049 51.7 206. 0.155
## 5 1100056 46.1 221. 0.203
## 6 1100064 42.6 218. 0.111
## 7 1100072 79.5 191. 0.223
## 8 1100080 43.1 196. 0.203
## 9 1100098 48.0 214. 0.212
## 10 1100106 47.5 196. 0.226
## # ℹ 3,113 more rows
## # ℹ abbreviated name: ¹avg_municipality_math_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.25
## Correlation between Gain and Dropout Rate: 0.23
## R2 Without drop out 0.3055326
## R2 with drop out 0.3154128
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_leitura_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -71.098 -5.131 0.080 4.967 61.075
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 136.60236 2.35750 57.94 < 2e-16 ***
## avg_municipality_leitura_5th -0.39540 0.01145 -34.53 < 2e-16 ***
## avg_drop_out_rate 11.43398 1.70393 6.71 2.3e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.385 on 3120 degrees of freedom
## Multiple R-squared: 0.3154, Adjusted R-squared: 0.315
## F-statistic: 718.7 on 2 and 3120 DF, p-value: < 2.2e-16
## # A tibble: 3,123 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_leit…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 59.1 189. 0.251
## 2 1100023 74.2 181. 0.252
## 3 1100031 57.4 185. 0.200
## 4 1100049 65.1 188. 0.155
## 5 1100056 58.9 200. 0.203
## 6 1100064 55.2 199. 0.111
## 7 1100072 91.6 165. 0.223
## 8 1100080 87.4 172. 0.203
## 9 1100098 66.3 196. 0.212
## 10 1100106 64.6 179. 0.226
## # ℹ 3,113 more rows
## # ℹ abbreviated name: ¹avg_municipality_leitura_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.44
## Correlation between Gain and Dropout Rate: 0.19
## R2 Without drop out 0.2013975
## R2 with drop out 0.2014288
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_math_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.589 -7.628 -0.396 7.159 90.977
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 111.70789 2.63708 42.360 <2e-16 ***
## avg_municipality_math_5th -0.31394 0.01238 -25.366 <2e-16 ***
## avg_drop_out_rate -0.64958 1.84872 -0.351 0.725
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.99 on 3142 degrees of freedom
## Multiple R-squared: 0.2014, Adjusted R-squared: 0.2009
## F-statistic: 396.3 on 2 and 3142 DF, p-value: < 2.2e-16
## # A tibble: 3,145 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_math…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 45.1 206. 0.243
## 2 1100072 55.6 196. 0.220
## 3 1100080 65.2 171. 0.292
## 4 1100098 55.0 209. 0.173
## 5 1100130 58.8 196. 0.399
## 6 1100148 64.3 197. 0.313
## 7 1100262 45.0 193. 0.308
## 8 1100296 45.6 208. 0.334
## 9 1100320 54.6 195. 0.151
## 10 1100338 51.4 191. 0.375
## # ℹ 3,135 more rows
## # ℹ abbreviated name: ¹avg_municipality_math_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.45
## Correlation between Gain and Dropout Rate: 0.22
## R2 Without drop out 0.1509072
## R2 with drop out 0.1538163
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_leitura_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -103.468 -7.253 0.044 7.279 84.824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 110.37868 2.63489 41.891 < 2e-16 ***
## avg_municipality_leitura_5th -0.27059 0.01375 -19.683 < 2e-16 ***
## avg_drop_out_rate 5.70705 1.73646 3.287 0.00103 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.17 on 3142 degrees of freedom
## Multiple R-squared: 0.1538, Adjusted R-squared: 0.1533
## F-statistic: 285.6 on 2 and 3142 DF, p-value: < 2.2e-16
## # A tibble: 3,145 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_leit…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 61.6 184. 0.243
## 2 1100072 72.4 179. 0.220
## 3 1100080 74.1 155. 0.292
## 4 1100098 65.2 189. 0.173
## 5 1100130 73.3 178. 0.399
## 6 1100148 69.1 178. 0.313
## 7 1100262 79.5 167. 0.308
## 8 1100296 65.1 186. 0.334
## 9 1100320 65.6 176. 0.151
## 10 1100338 62.3 176. 0.375
## # ℹ 3,135 more rows
## # ℹ abbreviated name: ¹avg_municipality_leitura_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.27
## Correlation between Gain and Dropout Rate: 0.28
## R2 Without drop out 0.3784317
## R2 with drop out 0.3926537
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_math_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -83.561 -6.617 -0.470 5.804 77.929
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 147.76667 2.81534 52.486 <2e-16 ***
## avg_municipality_math_5th -0.51132 0.01276 -40.087 <2e-16 ***
## avg_drop_out_rate 17.42232 2.03601 8.557 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.19 on 3127 degrees of freedom
## Multiple R-squared: 0.3927, Adjusted R-squared: 0.3923
## F-statistic: 1011 on 2 and 3127 DF, p-value: < 2.2e-16
## # A tibble: 3,130 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_math…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 49.3 201. 0.251
## 2 1100023 56.6 198. 0.252
## 3 1100031 47.7 205. 0.200
## 4 1100049 52.5 204. 0.155
## 5 1100056 40.9 216. 0.203
## 6 1100064 38.7 216. 0.111
## 7 1100072 57.7 201. 0.223
## 8 1100080 51.4 205. 0.203
## 9 1100098 43.3 218. 0.212
## 10 1100106 38.6 200. 0.226
## # ℹ 3,120 more rows
## # ℹ abbreviated name: ¹avg_municipality_math_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.24
## Correlation between Gain and Dropout Rate: 0.27
## R2 Without drop out 0.2611636
## R2 with drop out 0.2855907
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_leitura_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -103.493 -5.477 -0.033 5.627 68.628
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 138.46111 2.85423 48.51 <2e-16 ***
## avg_municipality_leitura_5th -0.43901 0.01446 -30.36 <2e-16 ***
## avg_drop_out_rate 19.43117 1.87920 10.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.43 on 3127 degrees of freedom
## Multiple R-squared: 0.2856, Adjusted R-squared: 0.2851
## F-statistic: 625 on 2 and 3127 DF, p-value: < 2.2e-16
## # A tibble: 3,130 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_leit…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 73.9 170. 0.251
## 2 1100023 70.2 182. 0.252
## 3 1100031 63.1 186. 0.200
## 4 1100049 64.6 187. 0.155
## 5 1100056 57.5 192. 0.203
## 6 1100064 53.1 196. 0.111
## 7 1100072 71.0 181. 0.223
## 8 1100080 74.8 185. 0.203
## 9 1100098 60.3 197. 0.212
## 10 1100106 58.9 182. 0.226
## # ℹ 3,120 more rows
## # ℹ abbreviated name: ¹avg_municipality_leitura_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.42
## Correlation between Gain and Dropout Rate: 0.24
## R2 Without drop out 0.247296
## R2 with drop out 0.2485391
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_math_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.703 -6.287 -0.433 5.364 74.317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 111.67778 2.43988 45.772 <2e-16 ***
## avg_municipality_math_5th -0.33104 0.01177 -28.126 <2e-16 ***
## avg_drop_out_rate 3.33025 1.46398 2.275 0.023 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.37 on 3128 degrees of freedom
## Multiple R-squared: 0.2485, Adjusted R-squared: 0.2481
## F-statistic: 517.3 on 2 and 3128 DF, p-value: < 2.2e-16
## # A tibble: 3,131 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_math…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 35.9 208. 0.243
## 2 1100072 53.3 201. 0.220
## 3 1100080 55.0 179. 0.292
## 4 1100098 53.9 207. 0.173
## 5 1100130 50.8 201. 0.399
## 6 1100148 58.6 201. 0.313
## 7 1100262 63.3 180. 0.308
## 8 1100296 59.3 195. 0.334
## 9 1100320 50.1 194. 0.151
## 10 1100338 50.8 197. 0.375
## # ℹ 3,121 more rows
## # ℹ abbreviated name: ¹avg_municipality_math_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>
## Correlation between 5th Grade and Dropout Rate: -0.43
## Correlation between Gain and Dropout Rate: 0.29
## R2 Without drop out 0.1753144
## R2 with drop out 0.1889349
##
## Call:
## lm(formula = avg_municipality_gain ~ avg_municipality_leitura_5th +
## avg_drop_out_rate, data = municipality_averages)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.956 -5.615 0.126 5.639 56.658
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 104.61838 2.37767 44.000 < 2e-16 ***
## avg_municipality_leitura_5th -0.25839 0.01273 -20.297 < 2e-16 ***
## avg_drop_out_rate 9.60733 1.32557 7.248 5.32e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.331 on 3128 degrees of freedom
## Multiple R-squared: 0.1889, Adjusted R-squared: 0.1884
## F-statistic: 364.3 on 2 and 3128 DF, p-value: < 2.2e-16
## # A tibble: 3,131 × 6
## COD_MUNICIPIO avg_municipality_gain avg_municipality_leit…¹ avg_drop_out_rate
## <int> <dbl> <dbl> <dbl>
## 1 1100015 51.5 185. 0.243
## 2 1100072 70.7 181. 0.220
## 3 1100080 65.6 160. 0.292
## 4 1100098 67.2 188. 0.173
## 5 1100130 65.6 179. 0.399
## 6 1100148 70.3 182. 0.313
## 7 1100262 82.4 164. 0.308
## 8 1100296 61.9 185. 0.334
## 9 1100320 66.6 175. 0.151
## 10 1100338 64.6 178. 0.375
## # ℹ 3,121 more rows
## # ℹ abbreviated name: ¹avg_municipality_leitura_5th
## # ℹ 2 more variables: predicted_gain <dbl>, residuals <dbl>