Upcoming Courses (Scheduled for Spring 2026)
Modern Experimental Design (STA514)
Focusing on recent journal articles, this course will investigate
issues associated with design of various studies and experiments.
Pharmaceutical clinical trials, case-controlled studies, cohort studies,
survey design, bias, causality and other topics.
Completed Courses (as of May 2025)
Applied Statistical Machine Learning (STA552)
Introduction to commonly used models and algorithms in data science
fields, including both supervised and unsupervised machine learning
algorithms. Topics included but not limited to probabilistic and linear
classification, neural networks, tree-based models, unsupervised
learning (clustering and feature extraction), and semi-supervised
learning algorithms. This course covered both theories and applications.
Principles of Experimental Analysis (STA512)
Course included technology-driven introduction to regression and
other common statistical multivariable modeling techniques. Emphasis
placed on interdisciplinary actions.
Foundations of Data Science (STA551)
The first part of this course was dedicated to data science
foundations such as statistical models, machine learning algorithms,
model performance metrics, and major resampling algorithms. The second
part focused on data science processes including data science project
life cycle, model selection, validation, performance evaluation, and
data science ethics. The last part of the course discussed data science
infrastructure and pipelines.
Data Visualization (STA553)
Principles of data visualization and how to addresses questions about
what, why, and how to visualize. Topics included visualization design
elements such as colors, shapes, and movements, etc.; data exploratory
visualization; statistical graphics and model visualization; process
visualization; dashboard design; and the ethics of data visualization.
Intro to Stat Computing & Data Management (STA511)
Overview of SAS for management and manipulation of data, conducting
statistical analysis and generating reports and graphics.
Mathematical Statistics I & II (STA505 & STA506)
A rigorous treatment of probability spaces and an introduction to the
estimation of parameters. Correlation, sampling, tests of significance,
analysis of variance, and other topics.
Intro to R & Intro to Python for Statistics (STA503 &
STA502)
Introductory course in R programming. Major topics included setting
up Rstudio, R data objects, data input/output, built-in and user-defined
R functions, control statement and looping, basic R plot functions,
commonly used R libraries, and R markdown.
Introductory course in Python programming. Major topics included
utilization of Python and Jupyter Notebook, basic syntax, data
input/output, control flows, data visualization and manipulation, along
with basic descriptive statistics and statistical tests. Utilization of
common libraries such as NumPy, Pandas and Maplotlib.
LS0tDQp0aXRsZTogIlJlbGV2YW50IENvdXJzZXdvcms6PGltZyBzcmM9XCJodHRwczovL25sZXBlcmEuZ2l0aHViLmlvL3N0YTU1MS9IVzAxL2ltZy9wZW5ndWluX2N1dGUucG5nXCIgc3R5bGU9XCJmbG9hdDogcmlnaHQ7IHdpZHRoOiAxMiVcIi8+Ig0Kc3VidGl0bGU6ICJDb3Vyc2UgRGVzY3JpcHRpb25zIGFuZCBEZXRhaWxzIg0KYXV0aG9yOg0KLSBuYW1lOiBOYXRhbGllIExlUGVyYQ0KICBhZmZpbGlhdGlvbjogV2VzdCBDaGVzdGVyIFVuaXZlcnNpdHkgfCBNLlMuIEFwcGxpZWQgU3RhdGlzdGljcywgRGF0YSBTY2llbmNlIENvbmNlbnRyYXRvbg0KZGF0ZTogDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiA0DQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICB0b2NfY29sbGFwc2U6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogbm8NCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICBzbW9vdGhfc2Nyb2xsOiB0cnVlDQogICAgdGhlbWU6IHJlYWRhYmxlDQogICAgZmlnX2FsaWduOiBjZW50ZXINCiAgICBkZl9wcmludDoga2FibGUNCi0tLQ0KDQpgYGB7Y3NzLCBlY2hvID0gRkFMU0V9DQpoMS50aXRsZSB7ICAvKiBUaXRsZSAtIGZvbnQgc3BlY2lmaWNhdGlvbnMgb2YgdGhlIHJlcG9ydCB0aXRsZSAqLw0KICBmb250LXdlaWdodDpib2xkOw0KICBjb2xvcjogZGFya21hZ2VudGEgOw0KfQ0KaDEuc3VidGl0bGUgeyAgLyogVGl0bGUgLSBmb250IHNwZWNpZmljYXRpb25zIG9mIHRoZSByZXBvcnQgdGl0bGUgKi8NCiAgZm9udC13ZWlnaHQ6Ym9sZDsNCiAgY29sb3I6IGRhcmttYWdlbnRhIDsNCn0NCmg0LmF1dGhvciB7IC8qIEhlYWRlciA0IC0gZm9udCBzcGVjaWZpY2F0aW9ucyBmb3IgYXV0aG9ycyAgKi8NCiAgZm9udC1mYW1pbHk6IHN5c3RlbS11aTsNCiAgY29sb3I6IG5hdnk7DQp9DQpoNC5kYXRlIHsgLyogSGVhZGVyIDQgLSBmb250IHNwZWNpZmljYXRpb25zIGZvciB0aGUgZGF0ZSAgKi8NCiAgZm9udC1mYW1pbHk6IHN5c3RlbS11aTsNCiAgY29sb3I6IG5hdnk7DQp9DQpoMSB7IC8qIEhlYWRlciAxIC0gZm9udCBzcGVjaWZpY2F0aW9ucyBmb3IgbGV2ZWwgMSBzZWN0aW9uIHRpdGxlICAqLw0KICAgIGZvbnQtd2VpZ2h0OmJvbGQ7DQogICAgY29sb3I6IG5hdnk7DQogICAgdGV4dC1hbGlnbjogbGVmdDsNCn0NCmgyIHsgLyogSGVhZGVyIDIgLSBmb250IHNwZWNpZmljYXRpb25zIGZvciBsZXZlbCAyIHNlY3Rpb24gdGl0bGUgKi8NCiAgICBmb250LXdlaWdodDpib2xkOw0KICAgIGNvbG9yOiBuYXZ5Ow0KICAgIHRleHQtYWxpZ246IGxlZnQ7DQp9DQoNCmgzIHsgLyogSGVhZGVyIDMgLSBmb250IHNwZWNpZmljYXRpb25zIG9mIGxldmVsIDMgc2VjdGlvbiB0aXRsZSAgKi8NCiAgICBmb250LXdlaWdodDpib2xkOw0KICAgIGNvbG9yOiBuYXZ5Ow0KICAgIHRleHQtYWxpZ246IGxlZnQ7DQp9DQoNCmg0IHsgLyogSGVhZGVyIDQgLSBmb250IHNwZWNpZmljYXRpb25zIG9mIGxldmVsIDQgc2VjdGlvbiB0aXRsZSAgKi8NCiAgICBjb2xvcjogZGFya3JlZDsNCiAgICB0ZXh0LWFsaWduOiBsZWZ0Ow0KfQ0KDQpib2R5IHsNCiAgYmFja2dyb3VuZC1jb2xvcjp3aGl0ZTsNCn0NCg0KLmhpZ2hsaWdodG1lIHsgDQogIGJhY2tncm91bmQtY29sb3I6eWVsbG93OyANCn0NCg0KcCB7IA0KICBiYWNrZ3JvdW5kLWNvbG9yOndoaXRlOyANCn0NCg0KaDUgew0KICBjb2xvcjogbmF2eTsNCn0NCg0KLmlmcmFtZSB7DQogIHRleHQtYWxpZ246IGNlbnRlcjsNCn0NCg0KYTpsaW5rIHsNCiAgY29sb3I6IGRhcmttYWdlbnRhOw0KfQ0KDQouZmlnbGFiZWwgew0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQogIGNvbG9yOiBkYXJrc2xhdGVncmF5Ow0KICBmb250LXdlaWdodDogYm9sZDsNCiAgZm9udC1zaXplOiAyMnB4Ow0KfQ0KDQoudGQxIHsNCiAgZm9udC13ZWlnaHQ6IGJvbGQ7DQp9DQoNCnRoLCB0ZCB7DQogIGJvcmRlci1ib3R0b206IDFweCBzb2xpZCAjZGRkOw0KICB0ZXh0LWFsaWduOiBsZWZ0Ow0KfQ0KDQp0cjpob3ZlciB7YmFja2dyb3VuZC1jb2xvcjogY29yYWw7fQ0KYGBgDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCjxmb250IGNsYXNzID0gImZpZ2xhYmVsIj5GdWxsIGRlZ3JlZSByZXF1aXJlbWVudHM8L2ZvbnQ+Og0KPGJyPjxhIGhyZWY9Imh0dHBzOi8vY2F0YWxvZy53Y3VwYS5lZHUvZ3JhZHVhdGUvc2NpZW5jZXMtbWF0aGVtYXRpY3MvbWF0aGVtYXRpY3MvYXBwbGllZC1zdGF0aXN0aWNzLW1zLyI+TS5TLiBpbiBBcHBsaWVkIFN0YXRpc3RpY3MgLSBEYXRhIFNjaWVuY2UgQ29uY2VudHJhdGlvbjwvYT48YnI+PGJyPg0KDQojIyMgRW5yb2xsZWQgQ291cnNlcyAoVXBjb21pbmcgZm9yIEZhbGwgMjAyNSkNCg0KIyMjIyBJbnRyb2R1Y3Rpb24gdG8gQ2F0ZWdvcmljYWwgRGF0YSBBbmFseXNpcyAoU1RBNTA3KQ0KRGF0YS1kcml2ZW4gaW50cm9kdWN0aW9uIHRvIHN0YXRpc3RpY2FsIHRlY2huaXF1ZXMgZm9yIGFuYWx5c2lzIG9mIGRhdGEgYXJpc2luZyBmcm9tIG1lZGljYWwgYW5kIHB1YmxpYyBoZWFsdGggc3R1ZGllcy4gQ29udGluZ2VuY3kgdGFibGVzLCBsb2dpc3RpYyByZWdyZXNzaW9uIHN1cnZpdmFsIG1vZGVscywgbm9uIHBhcmFtZXRyaWMgbWV0aG9kcyBhbmQgb3RoZXIgdG9waWNzLjxicj48YnI+DQoNCiMjIyMgSW50ZXJtZWRpYXRlIExpbmVhciBNb2RlbHMgKFNUQTUxMykNClJpZ29yb3VzIG1hdGhlbWF0aWNhbCBhbmQgY29tcHV0YXRpb25hbCB0cmVhdG1lbnQgb2YgbGluZWFyIG1vZGVscy48YnI+PGJyPg0KDQojIyMgVXBjb21pbmcgQ291cnNlcyAoU2NoZWR1bGVkIGZvciBTcHJpbmcgMjAyNikNCg0KIyMjIyBNb2Rlcm4gRXhwZXJpbWVudGFsIERlc2lnbiAoU1RBNTE0KQ0KRm9jdXNpbmcgb24gcmVjZW50IGpvdXJuYWwgYXJ0aWNsZXMsIHRoaXMgY291cnNlIHdpbGwgaW52ZXN0aWdhdGUgaXNzdWVzIGFzc29jaWF0ZWQgd2l0aCBkZXNpZ24gb2YgdmFyaW91cyBzdHVkaWVzIGFuZCBleHBlcmltZW50cy4gUGhhcm1hY2V1dGljYWwgY2xpbmljYWwgdHJpYWxzLCBjYXNlLWNvbnRyb2xsZWQgc3R1ZGllcywgY29ob3J0IHN0dWRpZXMsIHN1cnZleSBkZXNpZ24sIGJpYXMsIGNhdXNhbGl0eSBhbmQgb3RoZXIgdG9waWNzLg0KDQojIyMgQ29tcGxldGVkIENvdXJzZXMgKGFzIG9mIE1heSAyMDI1KQ0KDQojIyMjIEFwcGxpZWQgU3RhdGlzdGljYWwgTWFjaGluZSBMZWFybmluZyAoU1RBNTUyKQ0KSW50cm9kdWN0aW9uIHRvIGNvbW1vbmx5IHVzZWQgbW9kZWxzIGFuZCBhbGdvcml0aG1zIGluIGRhdGEgc2NpZW5jZSBmaWVsZHMsIGluY2x1ZGluZyBib3RoIHN1cGVydmlzZWQgYW5kIHVuc3VwZXJ2aXNlZCBtYWNoaW5lIGxlYXJuaW5nIGFsZ29yaXRobXMuIFRvcGljcyBpbmNsdWRlZCBidXQgbm90IGxpbWl0ZWQgdG8gcHJvYmFiaWxpc3RpYyBhbmQgbGluZWFyIGNsYXNzaWZpY2F0aW9uLCBuZXVyYWwgbmV0d29ya3MsIHRyZWUtYmFzZWQgbW9kZWxzLCB1bnN1cGVydmlzZWQgbGVhcm5pbmcgKGNsdXN0ZXJpbmcgYW5kIGZlYXR1cmUgZXh0cmFjdGlvbiksIGFuZCBzZW1pLXN1cGVydmlzZWQgbGVhcm5pbmcgYWxnb3JpdGhtcy4gVGhpcyBjb3Vyc2UgY292ZXJlZCBib3RoIHRoZW9yaWVzIGFuZCBhcHBsaWNhdGlvbnMuIDxicj48YnI+DQoNCiMjIyMgUHJpbmNpcGxlcyBvZiBFeHBlcmltZW50YWwgQW5hbHlzaXMgKFNUQTUxMikNCkNvdXJzZSBpbmNsdWRlZCB0ZWNobm9sb2d5LWRyaXZlbiBpbnRyb2R1Y3Rpb24gdG8gcmVncmVzc2lvbiBhbmQgb3RoZXIgY29tbW9uIHN0YXRpc3RpY2FsIG11bHRpdmFyaWFibGUgbW9kZWxpbmcgdGVjaG5pcXVlcy4gRW1waGFzaXMgcGxhY2VkIG9uIGludGVyZGlzY2lwbGluYXJ5IGFjdGlvbnMuIDxicj48YnI+DQoNCiMjIyMgRm91bmRhdGlvbnMgb2YgRGF0YSBTY2llbmNlIChTVEE1NTEpDQpUaGUgZmlyc3QgcGFydCBvZiB0aGlzIGNvdXJzZSB3YXMgZGVkaWNhdGVkIHRvIGRhdGEgc2NpZW5jZSBmb3VuZGF0aW9ucyBzdWNoIGFzIHN0YXRpc3RpY2FsIG1vZGVscywgbWFjaGluZSBsZWFybmluZyBhbGdvcml0aG1zLCBtb2RlbCBwZXJmb3JtYW5jZSBtZXRyaWNzLCBhbmQgbWFqb3IgcmVzYW1wbGluZyBhbGdvcml0aG1zLiBUaGUgc2Vjb25kIHBhcnQgZm9jdXNlZCBvbiBkYXRhIHNjaWVuY2UgcHJvY2Vzc2VzIGluY2x1ZGluZyBkYXRhIHNjaWVuY2UgcHJvamVjdCBsaWZlIGN5Y2xlLCBtb2RlbCBzZWxlY3Rpb24sIHZhbGlkYXRpb24sIHBlcmZvcm1hbmNlIGV2YWx1YXRpb24sIGFuZCBkYXRhIHNjaWVuY2UgZXRoaWNzLiBUaGUgbGFzdCBwYXJ0IG9mIHRoZSBjb3Vyc2UgZGlzY3Vzc2VkIGRhdGEgc2NpZW5jZSBpbmZyYXN0cnVjdHVyZSBhbmQgcGlwZWxpbmVzLiA8YnI+PGJyPg0KDQojIyMjIERhdGEgVmlzdWFsaXphdGlvbiAoU1RBNTUzKQ0KUHJpbmNpcGxlcyBvZiBkYXRhIHZpc3VhbGl6YXRpb24gYW5kIGhvdyB0byBhZGRyZXNzZXMgcXVlc3Rpb25zIGFib3V0IHdoYXQsIHdoeSwgYW5kIGhvdyB0byB2aXN1YWxpemUuIFRvcGljcyBpbmNsdWRlZCB2aXN1YWxpemF0aW9uIGRlc2lnbiBlbGVtZW50cyBzdWNoIGFzIGNvbG9ycywgc2hhcGVzLCBhbmQgbW92ZW1lbnRzLCBldGMuOyBkYXRhIGV4cGxvcmF0b3J5IHZpc3VhbGl6YXRpb247IHN0YXRpc3RpY2FsIGdyYXBoaWNzIGFuZCBtb2RlbCB2aXN1YWxpemF0aW9uOyBwcm9jZXNzIHZpc3VhbGl6YXRpb247IGRhc2hib2FyZCBkZXNpZ247IGFuZCB0aGUgZXRoaWNzIG9mIGRhdGEgdmlzdWFsaXphdGlvbi4gIDxicj48YnI+DQoNCg0KIyMjIyBJbnRybyB0byBTdGF0IENvbXB1dGluZyAmIERhdGEgTWFuYWdlbWVudCAoU1RBNTExKQ0KT3ZlcnZpZXcgb2YgU0FTIGZvciBtYW5hZ2VtZW50IGFuZCBtYW5pcHVsYXRpb24gb2YgZGF0YSwgY29uZHVjdGluZyBzdGF0aXN0aWNhbCBhbmFseXNpcyBhbmQgZ2VuZXJhdGluZyByZXBvcnRzIGFuZCBncmFwaGljcy4gIDxicj48YnI+DQoNCiMjIyMgTWF0aGVtYXRpY2FsIFN0YXRpc3RpY3MgSSAmIElJIChTVEE1MDUgJiBTVEE1MDYpDQpBIHJpZ29yb3VzIHRyZWF0bWVudCBvZiBwcm9iYWJpbGl0eSBzcGFjZXMgYW5kIGFuIGludHJvZHVjdGlvbiB0byB0aGUgZXN0aW1hdGlvbiBvZiBwYXJhbWV0ZXJzLiBDb3JyZWxhdGlvbiwgc2FtcGxpbmcsIHRlc3RzIG9mIHNpZ25pZmljYW5jZSwgYW5hbHlzaXMgb2YgdmFyaWFuY2UsIGFuZCBvdGhlciB0b3BpY3MuICA8YnI+PGJyPg0KDQojIyMjIEludHJvIHRvIFIgJiBJbnRybyB0byBQeXRob24gZm9yIFN0YXRpc3RpY3MgKFNUQTUwMyAmIFNUQTUwMikNCkludHJvZHVjdG9yeSBjb3Vyc2UgaW4gUiBwcm9ncmFtbWluZy4gTWFqb3IgdG9waWNzIGluY2x1ZGVkIHNldHRpbmcgdXAgUnN0dWRpbywgUiBkYXRhIG9iamVjdHMsIGRhdGEgaW5wdXQvb3V0cHV0LCBidWlsdC1pbiBhbmQgdXNlci1kZWZpbmVkIFIgZnVuY3Rpb25zLCBjb250cm9sIHN0YXRlbWVudCBhbmQgbG9vcGluZywgYmFzaWMgUiBwbG90IGZ1bmN0aW9ucywgY29tbW9ubHkgdXNlZCBSIGxpYnJhcmllcywgYW5kIFIgbWFya2Rvd24uDQoNCkludHJvZHVjdG9yeSBjb3Vyc2UgaW4gUHl0aG9uIHByb2dyYW1taW5nLiBNYWpvciB0b3BpY3MgaW5jbHVkZWQgdXRpbGl6YXRpb24gb2YgUHl0aG9uIGFuZCBKdXB5dGVyIE5vdGVib29rLCBiYXNpYyBzeW50YXgsIGRhdGEgaW5wdXQvb3V0cHV0LCBjb250cm9sIGZsb3dzLCBkYXRhIHZpc3VhbGl6YXRpb24gYW5kIG1hbmlwdWxhdGlvbiwgYWxvbmcgd2l0aCBiYXNpYyBkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzIGFuZCBzdGF0aXN0aWNhbCB0ZXN0cy4gVXRpbGl6YXRpb24gb2YgY29tbW9uIGxpYnJhcmllcyBzdWNoIGFzIE51bVB5LCBQYW5kYXMgYW5kIE1hcGxvdGxpYi4gPGJyPjxicj4NCg==