Ejercicio 10 Parcial 3
Se cargan las librerÃas y los datos
##
## Adjuntando el paquete: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
load("C:/Users/SANCHEZ/Desktop/GABRIEL2021/Universidad/Ciclo VI/Metodos para el analisis economico/serv_municipales.RData")
dsm <- serv_municipales %>% select(x1,x2,x3,x4,x5,x6)
rownames(dsm) <- serv_municipales$Municipio## Warning: Setting row names on a tibble is deprecated.
dsm_n <- scale(dsm)
kable(head(dsm_n, 10), align = "c") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"),
full_width = F,
position = "center") %>%
row_spec(0, bold = T, background = "#D3D3D3")| x1 | x2 | x3 | x4 | x5 | x6 | |
|---|---|---|---|---|---|---|
| ATIQUIZAYA | 2.3520765 | 1.2410345 | 2.0750696 | 1.1964483 | 1.1964483 | 1.4300073 |
| EL CARMEN | 2.0765626 | 1.1118237 | 0.9868413 | 1.2691683 | 1.2691683 | 0.7028941 |
| ALEGRIA | 1.8832195 | 1.1684951 | 2.2125301 | 2.0665369 | 2.0665369 | 1.6755674 |
| SAN JULIAN | 1.8010487 | 0.4657700 | 1.2915453 | 0.6146882 | 0.6146882 | 1.5208964 |
| TEJUTLA | 1.2430752 | 1.4031813 | 1.3069085 | 1.7183213 | 1.7183213 | 0.9702151 |
| PASAQUINA | 1.4104851 | 1.4265679 | 1.3384228 | 1.9683992 | 1.9683992 | 1.4719561 |
| JUAYUA | 1.4861757 | 1.4133155 | 1.2044870 | 1.1964483 | 1.1964483 | 2.2480096 |
| SAN SALVADOR | 0.0067681 | 0.3663771 | -0.0739910 | 0.5445109 | 0.5445109 | -0.1551503 |
| SAN PABLO TACACHICO | 1.4074575 | 0.9826130 | 1.3786035 | 0.3965282 | 0.3965282 | 0.1575592 |
| TEPECOYO | 1.4148730 | 1.2210599 | 1.1287842 | 1.5695336 | 1.5695336 | 0.0837941 |
Se determina el número óptimo de grupos utilizando K-means
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
# Se calcula K_means cluster
## K-means clustering with 4 clusters of sizes 15, 24, 26, 43
##
## Cluster means:
## x1 x2 x3 x4 x5 x6
## 1 -1.4346142 -1.6181310 -1.538942 -1.5237906 -1.5237906 -0.9587742
## 2 1.1041991 1.1360869 1.027246 1.2639525 1.2639525 1.0848346
## 3 -0.5709880 -0.4356322 -0.558954 -0.6241510 -0.6241510 -0.6187660
## 4 0.2293982 0.1937748 0.301466 0.2034866 0.2034866 0.1031046
##
## Clustering vector:
## ATIQUIZAYA EL CARMEN ALEGRIA
## 2 2 2
## SAN JULIAN TEJUTLA PASAQUINA
## 2 2 2
## JUAYUA SAN SALVADOR SAN PABLO TACACHICO
## 2 4 2
## TEPECOYO ANTIGUO CUSCATLAN SAN VICENTE
## 2 2 4
## CIUDAD ARCE EL PAISNAL SAN RAFAEL CEDROS
## 2 2 2
## AYUTUXTEPEQUE SAN FRANCISCO GOTERA SANTIAGO NONUALCO
## 2 4 4
## SANTA ROSA DE LIMA SANTA MARIA OSTUMA CIUDAD BARRIOS
## 4 4 4
## CHINAMECA NUEVA CONCEPCION JUJUTLA
## 2 2 4
## ZACATECOLUCA EL ROSARIO NEJAPA
## 4 2 2
## NUEVA GUADALUPE ARMENIA HUIZUCAR
## 4 2 4
## SANTA CRUZ MICHAPA SUCHITOTO SAN PEDRO MASAHUAT
## 2 2 2
## SAN JUAN NONUALCO APASTEPEQUE CORINTO
## 4 4 3
## SAN LUIS TALPA ANAMOROS BERLIN
## 2 4 3
## EL TRANSITO LA LIBERTAD PANCHIMALCO
## 3 4 4
## MONCAGUA COJUTEPEQUE SAN PEDRO PERULAPAN
## 4 4 2
## TEXISTEPEQUE SAN JOSE VILLANUEVA CHIRILAGUA
## 4 4 3
## ILOPANGO TONACATEPEQUE TECOLUCA
## 3 4 4
## SAN BARTOLOME PERULAPIA SENSUNTEPEQUE SANTA ELENA
## 4 3 4
## IZALCO AHUACHAPAN CHALATENANGO
## 4 4 4
## SAN SEBASTIAN SAN MIGUEL CONCHAGUA
## 4 4 4
## EL CONGO LOLOTIQUE CANDELARIA DE LA FRONTERA
## 1 4 4
## LISLIQUE USULUTAN ZARAGOZA
## 4 3 3
## METAPAN SANTA TECLA SOYAPANGO
## 4 4 3
## CALUCO SAN ANTONIO DEL MONTE SONSONATE
## 4 1 4
## SAN ALEJO ILOBASCO SANTIAGO TEXACUANGOS
## 3 4 4
## SANTIAGO DE MARIA NAHUIZALCO COLON
## 3 3 3
## SANTO TOMAS COATEPEQUE GUAYMANGO
## 4 3 3
## SAN MARTIN COMASAGUA TAMANIQUE
## 1 3 3
## APOPA DELGADO JUCUAPA
## 4 3 3
## ACAJUTLA TACUBA SAN LUIS DE LA HERRADURA
## 3 3 1
## OLOCUILTA PUERTO EL TRIUNFO JIQUILISCO
## 3 1 1
## SAN MARCOS QUEZALTEPEQUE MEJICANOS
## 3 1 3
## AGUILARES SAN SEBASTIAN SALITRILLO SANTA ANA
## 3 1 1
## CUSCATANCINGO GUAZAPA CHALCHUAPA
## 1 4 4
## JUCUARAN SONZACATE SAN JUAN OPICO
## 3 1 1
## TALNIQUE LA UNION SAN FRANCISCO MENENDEZ
## 1 1 1
##
## Within cluster sum of squares by cluster:
## [1] 24.07670 56.16520 46.38252 72.21429
## (between_SS / total_SS = 69.0 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
## cluster x1 x2 x3 x4 x5 x6
## 1 1 19.24456 38.51015 35.60929 20.74122 20.74122 14.64705
## 2 2 59.55943 78.47709 72.45514 68.66034 68.66034 42.75283
## 3 3 32.95844 55.66959 49.68016 36.20532 36.20532 19.32319
## 4 4 45.66810 64.80303 62.03424 50.43177 50.43177 29.25109
## x1 x2 x3 x4 x5 x6 cluster
## ATIQUIZAYA 79.37500 80.00000 87.50000 67.50000 67.50000 47.50000 2
## EL CARMEN 75.00000 78.12500 71.87500 68.75000 68.75000 37.50000 2
## ALEGRIA 71.92982 78.94737 89.47368 82.45614 82.45614 50.87719 2
## SAN JULIAN 70.62500 68.75000 76.25000 57.50000 57.50000 48.75000 2
## TEJUTLA 61.76471 82.35294 76.47059 76.47059 76.47059 41.17647 2
## PASAQUINA 64.42308 82.69231 76.92308 80.76923 80.76923 48.07692 2