Investigating Blotching as a Stress Indicator in Caribbean Reef Sharks (Carcharhinus perezi): Implications for Conservation and Capture Practices

Author

Yasiru Dilshan

1. Importing Data

#Importing Data

sharks <- read.csv("~/Penguin/sharks.csv")

1.1 Importing Libraries

#Importing Libraries
library(ggplot2)
library(arm)
library(tidyverse)
library(car)
library(HH)
library(lattice)
library(outliers)
library(scales)
library(lawstat)
library(ggbeeswarm)
library(dplyr)
library(VIM)

1.2 Exploring the Data

#Understanding of the Dataset

#Calling data
sharks
       ID    sex   blotch BPM    weight   length      air    water      meta
1   SH001 Female 37.17081 148  74.69050 186.6703 37.73957 23.37377  64.11183
2   SH002 Female 34.54973 158  73.41627 189.3189 35.68413 21.42088  73.68676
3   SH003 Female 36.32861 125  71.80837 283.6332 34.79854 20.05114  54.43466
4   SH004   Male 35.33881 161 104.62985 171.0986 36.15973 21.64319  86.32615
5   SH005 Female 37.39799 138  67.13098 264.3160 33.61477 21.76143 107.97796
6   SH006   Male 33.54668 126 110.49396 269.9829 36.38343 20.85200 108.86475
7   SH007   Male 36.68291 166 100.85795 194.2929 33.14734 21.80969  99.74645
8   SH008 Female 36.29497 135 101.20073 128.4664 36.77278 21.30411  96.33309
9   SH009   Male 35.40344 132  94.96854 268.6220 35.27123 22.21935  78.97403
10  SH010 Female 36.02478 127  71.25366 163.4187 35.68505 24.55002  72.28744
11  SH011 Female 31.77830 126  67.48792 179.0241 35.69932 24.49316 109.47375
12  SH012 Female 36.23767 131  70.03673 235.0309 33.66390 20.18835  62.02516
13  SH013   Male 35.68104 133 109.20626 244.0018 37.50058 23.63367 110.15313
14  SH014   Male 39.83638 121  90.88816 193.3701 34.44364 23.39661  99.84946
15  SH015 Female 37.04890 166  67.66870 253.2767 33.97566 23.21299 102.88892
16  SH016   Male 34.75400 128  87.65517 243.8493 33.91872 24.77314  85.70257
17  SH017 Female 34.17118 145 100.18700 180.6655 33.77393 23.95949 101.74559
18  SH018 Female 36.36105 155 104.51024 150.0938 35.71842 22.43661  94.89843
19  SH019   Male 33.49141 154  97.43775 168.4244 35.06666 21.11872 104.33486
20  SH020   Male 35.09741 125  93.30120 290.8302 36.07481 20.56476  95.31837
21  SH021   Male 35.75184 136  67.20550 269.3138 35.09389 22.55188  78.00404
22  SH022 Female 34.41702 122 106.51215 233.0735 36.28748 22.81342  69.08480
23  SH023 Female 36.33441 165  72.31583 211.3676 34.20907 25.46146  75.80276
24  SH024   Male 34.98489 150 108.56342 246.7264 33.46063 24.21346  52.73695
25  SH025 Female 35.11890 122 109.26327 206.5210 34.82810 22.92370  83.34694
26  SH026 Female 34.25971 165 102.63724 171.3584 37.34757 20.26606  76.20320
27  SH027   Male 39.13972 164 101.01174 252.1332 35.67246 21.82772 103.00903
28  SH028   Male 35.79007 140  97.12517 245.5119 33.67580 23.48505  68.32779
29  SH029   Male 35.17775 122  68.97648 218.6683 37.60242 23.31552 105.39974
30  SH030   Male 34.34153 144  80.31640 225.5624 34.79981 21.17395  90.90345
31  SH031 Female 35.25938 123 104.11146 281.7872 33.41046 21.96719  70.04117
32  SH032   Male 33.60036 159  87.55489 145.9111 35.26918 21.83619  73.42190
33  SH033   Male 35.64141 151  98.28177 218.3989 37.65183 22.81566  98.43076
34  SH034   Male 33.19158 145 109.07543 132.1652 36.90255 24.39488  95.38902
35  SH035   Male 38.27560 165 101.83150 193.5621 33.19902 21.68819  62.85867
36  SH036   Male 33.38074 133  81.03245 191.9316 33.84517 23.79306  93.62915
37  SH037 Female 36.70323 155  85.92942 131.7407 34.23563 25.44754  56.77674
38  SH038   Male 37.18545 128  93.33004 223.3584 34.86881 21.49496  75.69368
39  SH039 Female 33.86559 151  91.51238 141.6090 36.28981 23.90051  55.69342
40  SH040   Male 35.68198 131  78.43668 270.7260 36.62203 20.42393 103.43309
41  SH041   Male 34.11847 124 103.81184 150.0035 34.09605 25.11045  75.68498
42  SH042 Female 36.23841 126  84.34877 239.1682 37.87300 22.08561  93.31726
43  SH043   Male 37.70230 120  65.64434 218.6684 34.30250 20.81708  97.72654
44  SH044   Male 32.09225 145  95.88958 193.0045 36.08625 25.45430  53.69290
45  SH045 Female 35.01777 131  78.20756 245.9147 34.49825 25.55001  53.96627
46  SH046   Male 35.30483 136 101.89161 148.9993 36.65791 21.38283  65.71702
47  SH047 Female 35.73423 122  77.17206 245.9975 35.84840 24.58774  94.06933
48  SH048 Female 34.50264 157 102.84529 282.6606 35.42263 22.85964 112.25187
49  SH049 Female 35.54855 166  66.42762 250.3885 36.53131 25.36878  83.54757
50  SH050   Male 34.12747 149 102.92790 176.4550 37.63191 22.99183 108.13009
51  SH051 Female 35.51145 155  73.49472 260.5813 33.76855 23.30255  69.69122
52  SH052   Male 34.20984 145  66.71214 255.2545 35.12223 24.52193  71.57597
53  SH053   Male 35.76808 130 103.61025 277.7319 36.90622 24.75636 101.66732
54  SH054 Female 33.81010 147  66.69425 285.6476 35.72520 24.68691  99.01820
55  SH055   Male 32.37115 165  95.55005 163.4528 35.38565 22.54444  50.50741
56  SH056 Female 34.12868 122 108.46339 266.3492 35.73114 22.35189  54.77869
57  SH057 Female 34.38152 157  66.01216 288.7894 36.36709 25.52974  86.13684
58  SH058 Female 32.78833 121 104.75922 152.0740 34.04335 20.47321  75.20951
59  SH059   Male 36.50001 119 106.96948 217.8249 34.65448 24.72011  76.39855
60  SH060   Male 37.29134 135  67.77458 289.2569 33.56370 21.24816  64.03911
61  SH061 Female 33.14264 129 105.94553 210.0712 37.53218 23.40290 112.31804
62  SH062   Male 36.43598 166 104.12000 167.7886 35.38408 22.82472  67.21918
63  SH063 Female 34.35993 166  86.65600 228.3451 35.93839 25.38981 100.02049
64  SH064 Female 34.31053 155  65.46517 285.3384 34.28830 20.83338  75.19538
65  SH065   Male 34.73515 122  81.99963 155.4796 34.94378 24.62508 105.35837
66  SH066   Male 35.46505 148  89.87555 249.3298 37.46285 22.19886 109.55623
67  SH067   Male 36.56332 128  65.89645 181.7185 37.81910 20.39562  81.73635
68  SH068 Female 33.72053 142 103.80795 128.6539 35.22908 22.58208  89.75130
69  SH069 Female 35.39024 142  98.68314 221.7492 37.65225 25.58017  82.48984
70  SH070   Male 32.85958 158  83.81398 261.6298 33.45248 25.94927  56.49589
71  SH071 Female 36.87037 157  87.79575 270.3762 34.23995 20.71237  57.96726
72  SH072 Female 34.58863 163  89.61748 168.2099 35.77540 24.82431  68.69199
73  SH073 Female 36.24140 151 109.25117 198.0185 35.02442 24.88054  81.38041
74  SH074 Female 34.94177 163  78.20613 156.6616 37.63906 22.23139  96.09884
75  SH075 Female 33.80528 143  87.89158 196.1898 34.60457 22.76125 111.12821
76  SH076   Male 34.47937 159  94.70072 195.8206 37.05234 20.09560  63.29272
77  SH077 Female 36.27716 148 102.47105 227.0403 35.81215 25.37362  66.88572
78  SH078   Male 34.20434 119  66.22930 182.4831 37.98965 21.11023  90.55868
79  SH079   Male 35.13952 143  87.16104 273.9157 33.60145 21.26372  85.02801
80  SH080 Female 36.52400 152  92.37577 147.7080 37.12488 24.10008 100.13287
81  SH081   Male 35.35378 151  90.51166 238.2917 37.92181 21.09180  51.95288
82  SH082 Female 35.86922 132 102.96644 273.4815 34.63531 22.36627  91.45744
83  SH083 Female 33.76378 164  98.49024 143.2425 36.98502 21.76132  89.98110
84  SH084 Female 34.99762 130 104.98846 177.7733 36.35152 20.93068  88.04446
85  SH085   Male 34.42745 135  72.35138 241.8481 33.36558 21.44692  81.05827
86  SH086   Male 37.16959 122  79.30636 261.9043 34.57330 20.98942  50.68187
87  SH087 Female 33.98649 129  87.20821 241.8463 35.29138 24.02701  72.45724
88  SH088   Male 34.05025 146  83.32350 272.6493 35.59623 22.80616  58.48252
89  SH089 Female 34.83144 123 110.87828 277.1108 36.98113 20.53800  76.64611
90  SH090 Female 34.93018 158  81.86116 216.0979 33.28689 25.58217  93.57089
91  SH091   Male 35.60692 165  65.77708 172.4047 37.81372 23.40148  62.52203
92  SH092   Male 34.16414 121  82.91272 164.4089 36.06992 20.55318 101.12146
93  SH093   Male 36.90737 138  75.41480 135.7683 35.64557 20.11706  81.36636
94  SH094 Female 34.65726 140  71.08682 221.7926 37.03156 24.30985 107.17402
95  SH095 Female 32.60900 161 103.51608 175.0983 33.09616 25.34174  71.91561
96  SH096   Male 35.90758 152  98.27774 197.7596 37.03040 22.57737  80.77199
97  SH097 Female 35.27513 127  80.53280 153.9831 36.19002 24.70726 109.09920
98  SH098 Female 33.07815 154 101.94281 158.8229 34.09929 21.45744  52.44972
99  SH099   Male 33.96733 157  82.00881 155.1547 35.86211 20.88343  76.29960
100 SH100   Male 34.44525 120 109.42289 177.5218 35.60108 25.33677  90.88504
101 SH101   Male 36.42572 134  69.26562 196.4749 37.99978 23.93187  68.47177
102 SH102   Male 34.26732 154  85.74503 153.5896 34.73182 21.51349  96.27170
103 SH103 Female 32.27762 142  80.08924 243.8365 36.56592 20.98350  58.53386
104 SH104   Male 37.22830 165  78.34911 128.8481 37.39113 25.74924 101.57178
105 SH105   Male 32.53531 122  98.52265 212.9415 36.16896 22.86719  82.82166
106 SH106   Male 35.90348 151  92.37943 213.6005 33.80076 21.16600  61.64709
107 SH107   Male 36.39784 125  75.20744 265.7713 33.08772 21.75165  95.93255
108 SH108   Male 36.68703 135  73.29044 179.1079 35.37759 24.89065  91.28896
109 SH109 Female 35.72632 136  84.70922 184.3002 33.93537 22.97058  96.15302
110 SH110   Male 34.65632 134  78.89234 191.1178 36.70432 21.09131  54.94158
111 SH111 Female 33.76447 143  83.05695 264.8931 36.01802 25.34560  68.95380
112 SH112   Male 37.17692 151  96.54306 224.6350 37.27791 25.50143  62.35721
113 SH113   Male 36.76577 122  89.71193 280.3756 35.26790 21.92786 111.93940
114 SH114 Female 35.54950 155  87.56020 177.9312 37.44562 25.59447  94.39156
115 SH115   Male 34.93594 127  73.88824 199.1637 33.51968 21.84163  91.43666
116 SH116   Male 35.44028 166  66.00525 256.1074 36.13855 20.30288  88.35029
117 SH117 Female 36.48768 132  93.63509 269.5792 33.90883 25.98160  88.91327
118 SH118   Male 35.37963 136  68.55041 208.2467 36.87915 22.91738  51.89270
119 SH119   Male 37.59267 153  89.61978 238.0066 34.58231 21.10297  53.07295
120 SH120   Male 35.73577 128  67.95431 216.0158 37.38775 21.46644  63.92133
121 SH121   Male 33.72274 159  92.38551 188.3666 33.37237 25.20610  75.50738
122 SH122   Male 35.95868 123  99.47556 205.8371 37.14915 25.30833 110.96871
123 SH123 Female 35.56566 121 100.69014 211.7997 34.63772 25.03145  76.68962
124 SH124   Male 35.92057 145  92.32507 160.4630 36.10210 21.00988  64.82984
125 SH125 Female 34.04251 162 109.40178 179.0106 36.09293 21.75793  77.26870
126 SH126 Female 33.77159 145 101.47440 208.8009 35.02722 20.10380  94.90592
127 SH127 Female 33.86392 142  75.86195 177.6679 37.51978 21.73670  83.56013
128 SH128   Male 35.46943 164 104.23528 262.4866 35.30450 20.71000  82.62410
129 SH129 Female 33.80302 151  84.40131 224.5868 37.09203 25.58499  86.67182
130 SH130   Male 35.07222 130 105.06924 204.9788 34.49577 24.00500  65.43414
131 SH131   Male 34.74639 143  72.94091 285.3108 35.82829 25.74827  81.97022
132 SH132 Female 33.86019 129  84.31666 225.4904 34.55580 23.21792  67.17507
133 SH133   Male 38.65662 146  72.42396 189.7878 35.64647 22.31245  77.64661
134 SH134 Female 32.31056 129  91.77134 232.3262 37.70202 20.94913  69.41677
135 SH135 Female 37.23568 131  68.26047 246.2894 34.78965 25.59980  70.72911
136 SH136 Female 36.85702 120  72.24852 290.7134 35.27348 21.49555  80.62858
137 SH137   Male 32.88800 140 102.23423 176.4455 36.35886 23.66294  80.96468
138 SH138   Male 38.06194 134  83.55583 221.6356 34.58011 22.09738  78.78784
139 SH139 Female 33.59581 141  85.35059 128.6751 34.01522 23.30305  75.29192
140 SH140   Male 35.99556 131 107.88970 251.8000 37.79018 24.50147  89.86581
141 SH141 Female 33.79549 137 103.46005 277.5909 34.80523 21.56376 107.51920
142 SH142 Female 33.10335 124 103.88024 290.9374 35.48487 20.12939  61.95953
143 SH143   Male 33.82318 155 105.12856 249.9972 34.13104 23.11390  60.06371
144 SH144   Male 37.22728 123 107.52144 178.5039 35.05795 24.21061 109.47619
145 SH145   Male 35.39418 134  84.55558 128.2796 36.58785 20.76213  56.86031
146 SH146 Female 36.39183 127  87.02997 132.1405 34.31642 24.09147  74.47677
147 SH147 Female 36.84328 124  99.16543 282.8593 33.03791 21.06602  81.42454
148 SH148   Male 35.85999 166 105.09013 147.4057 33.81071 22.20610  80.74154
149 SH149 Female 33.56897 146  79.24966 135.5375 37.10377 21.48847 111.92199
150 SH150 Female 33.11113 131  65.47062 145.7330 37.10396 24.76164 105.00771
151 SH151   Male 35.36557 120  69.17696 148.1670 35.63953 24.16385  91.02469
152 SH152   Male 36.48702 146  73.59540 254.4253 36.94934 21.49606  84.87480
153 SH153   Male 35.92896 134  97.62558 213.5802 35.98778 25.79449  88.05992
154 SH154 Female 36.35739 120  81.89987 238.1954 37.27579 20.26600  55.55064
155 SH155 Female 33.88382 123  75.54827 176.1646 34.85995 23.27576  70.28917
156 SH156 Female 34.56139 143  82.59498 133.0148 37.48426 23.11390  61.33650
157 SH157   Male 36.56256 137  86.05231 181.6873 33.48171 25.74904  70.69646
158 SH158 Female 36.92970 160  75.05355 159.2658 34.40128 24.24493  79.65915
159 SH159   Male 36.30869 138 107.18462 185.0738 36.88023 24.33483  69.18763
160 SH160   Male 33.75869 138  88.21856 290.9527 36.19064 21.50509 107.84346
161 SH161 Female 30.77585 149 109.05626 253.9729 34.46067 24.02721  64.15829
162 SH162   Male 34.02139 145  82.21740 256.9053 36.21332 24.20691 109.02966
163 SH163 Female 33.38396 148  96.73251 189.9405 33.91255 25.18574  69.99987
164 SH164 Female 35.98082 146  70.03150 188.8569 34.57147 20.15593  50.93368
165 SH165 Female 34.49482 137  81.66194 137.8904 34.78508 20.84970  55.98825
166 SH166   Male 36.07216 150  72.48854 204.7737 36.03342 22.96511  79.55119
167 SH167   Male 38.51132 165 105.38634 169.0132 33.38560 22.00389  92.26167
168 SH168 Female 35.24772 148 103.33159 252.9665 37.08024 20.62234  66.38338
169 SH169   Male 36.53646 137  73.95419 136.7197 36.12408 20.15134  89.47353
170 SH170 Female 32.67439 143 103.26350 146.5351 36.57913 21.37123  89.22346
171 SH171 Female 34.89859 140  93.91948 132.1698 37.78333 25.60188  84.97639
172 SH172   Male 35.12783 160  80.67021 289.8701 34.08678 25.77848  95.72839
173 SH173   Male 34.48057 159  96.64833 269.9207 33.43879 21.62152 102.98517
174 SH174   Male 37.43851 136  75.32586 185.4717 37.92650 23.44797  72.83689
175 SH175 Female 34.54851 142  77.77787 160.3368 36.32860 23.53152  97.07738
176 SH176 Female 35.54189 136  66.49372 242.2694 36.52021 22.70112 112.43894
177 SH177   Male 35.50834 162  91.68781 128.2534 33.46132 24.25271  80.11243
178 SH178 Female 34.45879 155  76.42407 267.4729 34.28698 22.10824  90.42851
179 SH179 Female 36.07762 166 106.26913 240.2251 35.16094 23.83241  64.97782
180 SH180   Male 36.36155 152  93.07487 185.9836 34.67379 23.28713  50.39657
181 SH181   Male 36.02138 149 107.72480 142.8448 35.87439 21.25294  68.93254
182 SH182   Male 35.53009 142 101.05765 224.9920 36.93111 25.83883  64.06787
183 SH183   Male 36.13323 165  87.62539 178.8709 33.49332 22.86968  59.46141
184 SH184 Female 33.09675 125  78.53654 246.3244 34.11874 23.34812 105.64879
185 SH185   Male 33.49157 125  93.54783 184.6255 35.13868 23.41397  81.25652
186 SH186   Male 37.21730 159  72.31295 280.6037 33.72278 23.40415  91.68645
187 SH187   Male 36.26017 135  91.89506 199.8991 34.57746 20.19062  66.21984
188 SH188   Male 32.75580 151  87.42107 143.7484 36.86885 22.90739  89.00652
189 SH189   Male 35.31524 159  78.23924 157.1800 35.16408 21.41785  93.69293
190 SH190 Female 38.66238 141  90.15724 165.2321 33.37159 21.55313 112.31862
191 SH191   Male 33.85064 151  91.44474 208.1706 33.34797 25.78562  72.25575
192 SH192 Female 36.27604 128  68.69878 190.9609 36.32506 21.02351  72.66432
193 SH193   Male 34.86074 146  81.34990 156.7090 35.32475 22.28507  62.59773
194 SH194   Male 36.58108 134  97.75359 133.1614 36.96306 25.58874  73.08765
195 SH195 Female 34.41919 160 101.72666 277.7658 33.13397 25.04594 102.55151
196 SH196   Male 36.67552 127  76.70792 149.8624 36.29244 23.81301 102.54686
197 SH197   Male 37.62275 123  90.17847 257.5127 34.94288 20.67057  79.98693
198 SH198 Female 35.69544 131  86.91432 255.7991 35.58446 21.48523 106.58384
199 SH199   Male 37.07165 159  74.37317 185.9547 33.68490 20.50748  55.51194
200 SH200   Male 34.60328 159  95.56294 237.9323 36.51688 21.06436  98.17417
201 SH201   Male 36.04940 119  72.62179 162.4149 36.84475 20.62519 108.89156
202 SH202   Male 35.86671 164 107.75189 151.2548 33.34401 22.46135  86.05692
203 SH203   Male 38.64013 122  81.62802 194.8412 34.93538 22.43826  93.26034
204 SH204 Female 34.78846 123  66.33142 170.7840 37.58242 22.33434  72.36955
205 SH205   Male 37.04875 122 110.66800 237.5887 37.74290 21.05642  86.71372
206 SH206 Female 32.20917 164  99.78551 227.9193 36.43191 20.26350  99.58747
207 SH207 Female 34.56033 129  71.91227 290.1311 35.36025 23.28969  61.05480
208 SH208   Male 35.03548 129  66.83643 263.1934 37.48646 20.63547  92.57415
209 SH209 Female 34.14408 155  65.15314 250.2264 33.40181 20.82104 106.95097
210 SH210   Male 35.48251 128 110.49392 205.9378 37.21552 21.40080  61.45664
211 SH211 Female 33.26947 164  81.88777 215.2635 33.81956 20.12551  96.40223
212 SH212   Male 32.27892 163  98.90980 211.1515 33.94479 21.89620 106.00333
213 SH213   Male 36.87935 150  95.52091 277.9631 36.95092 21.67558 108.71009
214 SH214   Male 37.67336 155  77.04085 225.9307 37.05104 21.99929  92.88962
215 SH215   Male 34.66563 119  72.06605 194.7612 37.72538 24.89097  52.07729
216 SH216   Male 33.56095 130  69.20206 211.4640 33.20529 24.76176  57.40244
217 SH217   Male 34.96694 137  72.55576 257.6338 35.69012 23.36290  86.12398
218 SH218   Male 33.82718 128  83.81067 133.9490 37.71951 24.45560  94.08808
219 SH219   Male 33.50852 129  97.61688 223.0908 33.94239 23.84800  98.60744
220 SH220 Female 34.47858 131  94.67604 273.5521 34.11300 23.57607  51.02802
221 SH221 Female 35.99021 129 108.59903 195.2602 33.51585 24.20466  68.93962
222 SH222   Male 33.33818 128  74.72527 222.2863 36.79951 24.46908 108.98971
223 SH223   Male 37.00103 163  80.62482 163.0760 34.85521 24.82031  59.71121
224 SH224 Female 35.28434 152  94.81944 210.5426 33.82469 21.96495  79.23714
225 SH225 Female 34.77076 147  97.03831 284.7500 35.47918 24.13970  59.38391
226 SH226   Male 35.02983 143  91.89068 176.1361 34.92279 25.98523  78.28148
227 SH227   Male 33.70580 123 108.58425 249.7813 37.95582 24.82551  69.87094
228 SH228   Male 34.99563 148  72.13075 144.3198 33.32429 23.45195 109.06037
229 SH229 Female 35.81950 125  74.82072 265.5075 37.44526 21.34394  51.62363
230 SH230 Female 34.84883 120 100.16557 232.3737 37.56621 23.13661 109.16231
231 SH231   Male 33.14350 128 100.71676 226.6396 37.06714 23.92129  99.28393
232 SH232 Female 36.92090 132  91.61429 192.9478 35.55935 21.29054  57.57463
233 SH233 Female 35.48229 131  75.03100 224.2624 34.23656 21.14766 104.02512
234 SH234 Female 33.89644 140  81.08696 238.7075 34.58767 25.88602  88.11245
235 SH235   Male 34.10182 156  70.11244 130.7063 37.91824 24.07606 107.05396
236 SH236 Female 36.06121 125  71.30789 147.0164 36.18505 23.46830  78.94451
237 SH237 Female 34.07307 148  93.66121 199.3706 36.31361 21.73450  72.40215
238 SH238 Female 34.79541 138  91.53824 241.4079 34.10377 24.09668  84.26550
239 SH239 Female 34.98931 141  89.64871 231.7945 37.84878 22.19589  89.19871
240 SH240 Female 34.12705 149  73.11996 275.8609 36.59425 25.64541 106.71781
241 SH241   Male 35.66434 156  93.95195 172.2191 36.57991 23.89903  97.44425
242 SH242 Female 34.64274 165  70.45932 207.7734 36.48022 20.30784  54.09448
243 SH243   Male 34.07018 137  96.40814 148.7859 35.43456 23.34639  72.37134
244 SH244 Female 32.74815 151  82.12538 262.7706 33.18654 22.14781  88.15269
245 SH245 Female 34.88511 137  85.28268 279.2720 34.57891 21.22774  91.39811
246 SH246 Female 35.69862 120 110.94466 201.4641 36.69199 24.22643 110.98538
247 SH247 Female 34.10099 143  65.39909 196.7610 34.30429 23.75784  79.49685
248 SH248 Female 33.56870 158  87.15990 157.8510 34.13062 23.40831  73.50700
249 SH249 Female 37.29475 145  96.88163 282.5016 35.85920 21.09733  71.78561
250 SH250 Female 37.90292 126 107.19693 151.7995 33.04494 22.78920  71.86493
251 SH251   Male 35.66700 155 102.51636 163.5317 35.57957 25.01420  86.75932
252 SH252 Female 38.27531 151  74.69447 153.0456 37.18947 20.71505  91.35984
253 SH253   Male 33.86044 122  93.17921 230.0938 35.99259 24.70831  92.99403
254 SH254   Male 34.73333 143  93.27573 259.4982 37.73990 20.80868  97.52831
255 SH255 Female 34.36893 140  98.53840 149.1347 37.38754 20.79532  78.21035
256 SH256   Male 37.65034 150  99.25857 174.6154 34.20831 23.61122  69.62128
257 SH257 Female 37.97618 133 107.78263 289.6490 34.67373 25.20724  77.80398
258 SH258 Female 32.49322 166 105.96149 202.6149 34.70281 25.11431  89.97645
259 SH259 Female 35.03094 123  66.98864 256.2868 37.13188 22.38128  76.50583
260 SH260   Male 36.42890 150  93.34433 241.1359 34.45962 21.29792 112.17231
261 SH261   Male 35.87160 124  72.83432 177.8466 36.15865 21.67362  51.97304
262 SH262 Female 34.17285 140  86.62852 254.3199 37.43525 21.84482  90.77239
263 SH263   Male 34.26328 133  91.31625 257.4981 34.36959 21.24598  69.44107
264 SH264 Female 36.50998 139  77.15210 157.3571 35.15757 25.18634  50.02600
265 SH265 Female 35.48137 161  91.62350 257.9088 37.72965 23.27551  99.16839
266 SH266   Male 37.55416 125 102.86527 203.4675 36.33979 22.12451  71.87174
267 SH267   Male 34.92134 132  81.23667 194.7555 36.93083 21.23422  86.41118
268 SH268   Male 35.50131 142  90.25893 204.3568 37.53124 20.80851 106.60112
269 SH269 Female 36.07201 151  97.14867 138.5105 36.13022 20.94955  78.88339
270 SH270 Female 33.61226 129  97.45533 181.3498 37.95038 25.92795  93.32837
271 SH271   Male 33.84733 131  75.73423 167.3852 37.58285 23.93951  91.78185
272 SH272 Female 34.26067 130  84.91837 250.9561 33.50817 25.36966  57.13776
273 SH273 Female 36.04394 122  76.73184 234.4700 36.92902 25.17986  90.96788
274 SH274   Male 34.57425 133  91.31657 278.6965 37.57242 23.19948  76.05037
275 SH275   Male 34.87784 121  83.22961 249.0271 35.92252 24.11169 111.32771
276 SH276   Male 35.34228 152  94.25187 230.4080 33.37476 25.52029  71.59681
277 SH277   Male 33.46396 128  77.68057 271.4342 34.93136 20.82766  61.02523
278 SH278 Female 34.26182 165  70.41833 218.3929 33.71247 22.91195  53.68054
279 SH279   Male 35.03768 137  97.84047 159.2311 37.79772 22.48032  95.90756
280 SH280   Male 33.84433 157  83.73058 278.9975 35.90593 22.49820 106.99832
281 SH281   Male 35.80479 153  94.46693 250.9881 35.89400 24.01538  67.44232
282 SH282   Male 34.77044 134  66.51358 227.2029 33.31067 22.67703  73.08693
283 SH283   Male 33.95021 125 101.36533 174.4905 35.28620 24.53929  99.21915
284 SH284 Female 34.45899 134 108.92216 276.7987 33.64552 22.05565  93.95115
285 SH285   Male 34.24796 161 106.74323 283.3528 37.21471 21.59466  77.15406
286 SH286 Female 36.11875 121  87.83848 249.8122 35.11459 23.95479  86.08866
287 SH287   Male 33.65124 166  72.71497 159.5279 37.79497 21.06944  86.91398
288 SH288   Male 34.15069 162 101.19123 195.8376 34.50408 25.17976  88.57597
289 SH289 Female 35.18800 128  88.70037 211.6763 33.96180 23.30146  60.82497
290 SH290   Male 35.25384 142  90.98008 251.8069 36.62212 22.55947  93.32207
291 SH291   Male 35.85005 132  87.59364 266.7115 36.91454 21.37844  91.34767
292 SH292 Female 36.74514 152  96.19937 167.3505 34.94094 24.50046 109.66820
293 SH293   Male 33.97565 138  76.89542 137.4947 33.12829 22.13699 109.16437
294 SH294   Male 34.45961 152  79.23185 132.9484 33.18622 24.24013  96.61527
295 SH295   Male 34.01414 130 107.65895 132.3427 35.19025 21.92930  88.29556
296 SH296   Male 33.60120 162 105.00764 169.0551 36.47813 23.64483  50.81773
297 SH297   Male 36.11724 139  73.48738 149.8453 35.32739 21.65648  92.02980
298 SH298 Female 34.79932 130  90.76888 264.8987 34.76677 24.96128  70.07991
299 SH299   Male 34.24048 121  99.32100 186.4204 33.18242 21.35987  66.58794
300 SH300 Female 34.57090 121  82.76423 250.5702 36.80890 20.73221  84.41250
301 SH301 Female 34.45457 149  66.46569 252.4774 37.99566 24.44752  90.97286
302 SH302   Male 34.57331 126  73.90156 133.5505 34.52711 24.63493  75.19385
303 SH303 Female 32.22041 152 101.09966 184.1385 33.50812 20.93972  98.46156
304 SH304   Male 32.05344 122  65.88329 229.9260 34.78242 20.93987  94.32442
305 SH305 Female 33.95618 146  95.40135 195.9193 36.11430 20.01895  58.12447
306 SH306   Male 36.68645 147  89.22630 277.1545 33.11549 21.53520  80.07905
307 SH307   Male 34.52245 119  73.22300 213.4676 34.55394 21.67472  73.22178
308 SH308   Male 36.77137 127 102.47916 210.5893 33.12148 20.87040  69.46026
309 SH309   Male 37.64657 123  95.23040 238.2275 36.26119 23.43208  77.37543
310 SH310   Male 35.29631 130 104.23524 210.9847 34.85070 22.62726 104.12550
311 SH311   Male 34.46606 128 106.98222 190.5967 36.02547 23.13802 112.39836
312 SH312   Male 34.43116 143  83.87125 255.5846 36.62019 24.07849 109.28503
313 SH313   Male 35.47244 134  82.45794 181.8804 34.42731 20.05743 109.52072
314 SH314 Female 35.05340 165 104.25167 187.1318 34.57809 24.26534  51.60166
315 SH315 Female 34.27528 165  92.35764 139.8416 36.54493 22.17074  91.75451
316 SH316   Male 34.16990 165  77.86955 215.8565 36.18250 21.91825  59.83098
317 SH317   Male 33.98736 157  76.14957 288.0101 33.91788 20.78277  56.00951
318 SH318 Female 34.97589 144  94.74883 264.2729 36.72332 23.42753 108.88082
319 SH319 Female 32.84784 135 103.40582 143.2128 37.73968 20.74990  99.09010
320 SH320   Male 38.56100 152  94.93391 192.5254 36.35400 23.97910  94.95704
321 SH321   Male 35.40291 128 105.81262 177.9299 34.72326 25.59335  66.06463
322 SH322   Male 35.03834 162  68.60669 178.7181 36.69911 23.69790  75.48860
323 SH323 Female 35.88209 137  96.22864 226.5666 33.84145 25.89763 107.73100
324 SH324 Female 35.04288 135  70.14357 160.3442 35.41495 22.69298  63.51964
325 SH325   Male 34.57363 150  90.62601 263.0268 33.46388 23.01246 106.78254
326 SH326 Female 34.65921 151  71.48127 272.3416 37.93191 25.79376  76.73386
327 SH327 Female 36.83684 151  75.76946 271.5658 34.19946 22.47481  91.61082
328 SH328 Female 34.90283 161 105.19883 198.1164 37.51192 20.65386 104.47734
329 SH329   Male 35.81721 150  76.23923 183.9762 37.46202 22.97824 102.93314
330 SH330 Female 37.41077 136 107.16141 134.6440 35.06137 21.85914  99.82622
331 SH331 Female 35.54236 144 100.35650 280.4821 37.56455 22.97742 101.93685
332 SH332 Female 35.70572 155  83.20046 254.7629 34.42881 25.58226  76.14968
333 SH333 Female 36.86162 142 100.51487 258.1731 35.08626 20.50906  62.40783
334 SH334 Female 31.35935 137  74.21115 223.6957 34.71320 22.07716  86.06986
335 SH335   Male 36.56161 156  73.86470 255.2524 34.32770 20.98529  75.03985
336 SH336 Female 33.72887 149  89.74291 161.6294 33.28444 25.00418  86.52279
337 SH337   Male 36.39924 152 104.18420 238.3806 37.45125 23.64788 110.07464
338 SH338 Female 36.11878 143 101.53496 135.8858 37.43137 25.46580  81.58295
339 SH339 Female 35.90743 166  66.31809 169.6763 36.14749 20.45024  64.48404
340 SH340 Female 36.60670 127  65.10202 223.4385 35.41298 24.96522  97.36678
341 SH341 Female 36.91332 146 101.60660 195.6200 36.64927 21.85829  74.49485
342 SH342 Female 36.71040 148  92.47330 245.8535 34.79674 23.67820  61.16638
343 SH343   Male 33.88859 154  88.50400 265.8134 34.64367 24.90901 103.74115
344 SH344   Male 37.70040 149 102.45158 197.1973 34.63872 25.17279  66.12658
345 SH345 Female 33.52062 124  83.58410 153.8665 34.74931 24.75344  81.89391
346 SH346   Male 31.88414 151  77.25497 226.2309 35.40095 24.30349  58.69438
347 SH347   Male 33.85814 143  85.30940 165.5583 36.12845 23.62499  61.41425
348 SH348 Female 33.19538 151  69.13756 222.3851 37.95816 22.02177  88.88602
349 SH349 Female 36.76501 119  76.30982 263.3457 35.20442 24.09981  84.02378
350 SH350 Female 35.09021 148  77.26599 220.1992 34.82416 24.98651  59.25208
351 SH351   Male 35.68289 123  68.59672 154.4724 34.73022 20.32424  63.79767
352 SH352   Male 34.77303 150 107.07153 211.4400 33.24200 23.55449  92.27863
353 SH353 Female 36.80253 136  67.48800 140.1238 36.47810 22.89509 107.37572
354 SH354   Male 33.74675 138  75.21791 192.0056 35.05213 21.76738 106.41086
355 SH355 Female 34.97680 160  76.82921 243.9314 35.34336 25.43885  99.51934
356 SH356   Male 34.74759 135  94.89981 265.3865 34.84600 25.03575  98.80354
357 SH357   Male 33.53000 122  75.67982 277.3364 37.70574 22.32384  82.82668
358 SH358 Female 33.60686 155  77.06229 230.4074 33.37923 21.06090  89.12843
359 SH359 Female 35.26304 143  66.39182 263.4992 34.46337 23.96301  66.90126
360 SH360 Female 35.70735 126 107.57719 140.0550 33.90443 23.10868  68.02222
361 SH361 Female 33.97202 130  90.22788 251.9746 34.01210 23.99889  60.33985
362 SH362   Male 36.48670 164  72.23105 134.6421 36.30760 25.63544 107.31871
363 SH363   Male 35.11494 125 101.17683 280.7362 35.78906 23.13337 112.44503
364 SH364   Male 35.96067 149 107.42450 189.1124 34.66111 24.14144  97.77137
365 SH365   Male 35.28866 135  76.84522 197.9511 37.96769 24.35740  97.18871
366 SH366 Female 35.27511 130 106.41731 238.9828 33.67269 23.78368  50.81652
367 SH367 Female 35.47827 135 103.26130 154.5074 34.31242 23.59663  72.50407
368 SH368 Female 35.33056 123  99.18252 203.1653 33.81918 25.66284  60.85388
369 SH369 Female 32.94522 121  91.60425 279.4665 36.09559 23.05097  79.63885
370 SH370 Female 34.31492 148  73.09056 191.2593 34.61948 23.53888  66.98821
371 SH371 Female 34.49605 162  89.40380 179.2839 36.92247 25.81136  88.07939
372 SH372   Male 34.00363 163  85.37199 247.5207 35.35529 20.85376  83.88652
373 SH373 Female 32.78553 140  81.37420 141.3721 33.93454 25.59962  97.93983
374 SH374 Female 34.74200 149 105.15749 266.7394 37.49456 23.97601  90.81482
375 SH375 Female 34.24688 123  71.23056 245.5245 36.25947 24.50860  74.98087
376 SH376   Male 35.27814 160  95.18072 245.3274 34.03072 23.67498  83.65175
377 SH377   Male 35.23208 124  89.43545 287.9883 37.00604 20.00503  93.48814
378 SH378   Male 33.72488 161 102.12582 223.4937 37.18016 24.55062  98.27859
379 SH379 Female 34.81528 145 107.67984 276.9330 33.86582 23.36759  60.47506
380 SH380 Female 33.27486 166  65.17918 170.4836 35.83773 23.13356  64.26075
381 SH381 Female 34.55222 123 110.21564 158.4079 37.47619 24.49030  62.87672
382 SH382   Male 34.02853 146  76.16371 277.5005 36.26235 24.56456  66.48799
383 SH383   Male 35.98068 120 104.05374 221.0676 35.96892 25.29461  63.42344
384 SH384 Female 36.99602 137  79.90659 157.2522 36.52481 23.86023 106.49183
385 SH385   Male 36.48882 132 103.42684 200.9714 34.51129 25.39190  90.75745
386 SH386   Male 35.83944 146  85.83771 180.5415 36.37178 25.48678  89.21970
387 SH387   Male 37.07808 133  96.59297 182.6662 36.42083 22.98708  54.17955
388 SH388   Male 36.92076 152  72.47292 185.4032 36.08497 25.83948  58.16932
389 SH389 Female 34.18094 151  80.84541 165.0507 35.61039 23.67456  89.11647
390 SH390 Female 35.69824 127 105.17205 175.2676 34.74692 24.96252  50.78022
391 SH391   Male 34.72575 150  77.22077 248.9632 37.95682 20.12143  93.56707
392 SH392   Male 40.08356 141 110.88848 203.7803 34.34650 24.45843  60.16624
393 SH393 Female 34.93960 161 104.99774 202.7821 33.63340 23.27929  94.20890
394 SH394 Female 34.18335 124  99.73222 284.7855 34.77715 23.05836  63.44573
395 SH395 Female 33.49879 144  72.04674 238.0288 35.74175 21.32748  97.33655
396 SH396   Male 37.31096 147  73.28111 143.5106 34.70847 21.60553  68.08827
397 SH397 Female 31.98199 122  84.18232 247.8340 34.98050 23.64686  62.61418
398 SH398   Male 37.58439 147 106.04114 219.2139 33.23550 25.08020  91.01574
399 SH399   Male 36.79061 148 103.39950 158.3315 33.76670 23.80185  60.58858
400 SH400 Female 34.92301 158 106.04014 215.8973 35.19997 25.76918  89.20596
401 SH401   Male 32.69830 138 104.57984 242.2155 34.33642 25.07922  57.58106
402 SH402 Female 38.33805 129 101.23023 287.7291 34.77873 24.10481  99.89014
403 SH403 Female 33.48776 144  65.62915 199.4360 37.02513 20.96385  82.60629
404 SH404 Female 36.88131 146  97.70092 278.2226 34.31691 21.75103  81.24088
405 SH405   Male 35.70079 161  83.27224 179.4364 36.16117 23.61640 110.41629
406 SH406   Male 34.97168 161  71.69055 235.4119 34.17438 24.43758 109.64794
407 SH407 Female 35.00973 133  74.86644 197.5205 34.42046 23.02569  67.72881
408 SH408   Male 34.12583 144  80.17069 278.1906 35.12193 24.78623  75.36572
409 SH409 Female 34.27767 125  98.44889 162.7866 37.75298 21.97254  76.03152
410 SH410 Female 34.36868 121  72.33262 144.0637 33.37066 22.60196 105.54567
411 SH411   Male 35.70131 160  98.26092 235.0470 36.51162 22.32035 109.98515
412 SH412   Male 35.52811 133  79.10572 202.3687 35.14336 23.92115  83.26042
413 SH413   Male 34.29493 161  65.40377 251.0183 35.66119 22.64759  95.98636
414 SH414 Female 34.92444 127  75.40702 216.4026 36.64670 20.17690  82.43689
415 SH415 Female 34.16216 158  87.72118 160.6069 33.48257 23.14456  63.62756
416 SH416   Male 34.06868 150  77.08888 281.0293 33.03090 24.21683  66.04148
417 SH417 Female 34.60461 137  73.62268 288.8768 34.56835 21.92877  95.96594
418 SH418 Female 36.25016 162  76.05660 142.3661 33.05361 23.01677 110.77206
419 SH419   Male 36.52201 132  97.45106 253.1751 37.46327 20.10175  74.20751
420 SH420   Male 35.65700 121  87.65321 193.7783 36.90866 23.66210  50.95240
421 SH421   Male 33.63755 137  81.33557 204.2617 37.40671 25.75210  99.81172
422 SH422   Male 33.16705 141  91.07172 280.8857 35.29494 20.66211  87.65757
423 SH423 Female 34.14676 158  87.03252 211.6580 37.95168 22.82731  89.09519
424 SH424   Male 35.63334 158  72.86885 163.4943 37.85090 22.38551  65.26609
425 SH425   Male 35.26394 151  72.80360 176.0080 35.39762 23.24656  79.22449
426 SH426   Male 34.45643 155 107.24132 223.6048 35.73888 22.32395  95.68879
427 SH427   Male 32.74182 124  79.87092 234.0897 37.70763 25.12568  84.78133
428 SH428   Male 35.91940 164  73.11988 253.1939 36.60971 21.19543  58.65791
429 SH429 Female 36.33284 158  95.21010 148.2137 35.85016 24.75789 103.55924
430 SH430   Male 36.37596 156  99.27437 290.7846 35.09654 20.84968  93.20290
431 SH431 Female 34.90484 121  99.62460 148.8715 36.23355 23.27300 100.24467
432 SH432   Male 36.72031 157  83.86429 249.7233 34.75727 23.29329  61.15261
433 SH433   Male 33.19147 121  68.23699 128.7755 36.53137 24.03148  72.26532
434 SH434 Female 34.51068 163 102.35441 192.0107 37.86964 22.15856  77.62754
435 SH435   Male 35.87670 135  78.21809 213.0758 37.95031 23.53770  58.74866
436 SH436   Male 34.98279 160 107.55546 224.9277 37.45293 21.64896  84.46057
437 SH437 Female 35.39109 148  96.02892 228.8660 37.31710 23.07869  60.74416
438 SH438   Male 35.17529 159 103.45890 286.5422 36.82777 23.82525  87.58286
439 SH439   Male 36.27341 119 110.23204 266.8783 37.80028 24.14432 111.97348
440 SH440   Male 34.71510 155  78.32300 274.9069 37.73255 23.26769  89.20865
441 SH441   Male 35.40709 119  65.82617 229.0171 36.14790 24.31172  58.97606
442 SH442   Male 34.44828 166  75.12546 252.5877 33.57650 20.73357  54.50640
443 SH443 Female 32.66327 156  67.25763 256.5042 34.74332 24.31804  51.71631
444 SH444   Male 34.42770 129 108.76802 147.2770 34.90338 21.53185  90.76962
445 SH445 Female 35.93561 157  77.12889 270.4422 37.78738 20.50081 102.09697
446 SH446 Female 33.86191 129  83.40891 206.3680 33.89433 20.32451  78.45961
447 SH447   Male 35.17856 140  70.87056 210.5399 33.72020 25.85594  91.01777
448 SH448 Female 35.64318 130  95.30658 165.7336 33.87270 22.93682  79.48976
449 SH449   Male 37.59347 145  70.50998 268.8466 37.19276 20.14358  67.09697
450 SH450 Female 34.41429 153 107.48861 222.3305 33.15764 24.94298 100.52145
451 SH451   Male 35.94039 121  70.69381 156.4729 34.31676 21.92441  92.63006
452 SH452   Male 35.43154 133  93.52788 154.1623 35.28256 23.25968  68.85715
453 SH453   Male 36.21244 148  71.05996 276.7262 35.42365 25.51436  79.56745
454 SH454   Male 33.54295 147  81.24885 169.7592 35.72118 23.80958  92.95002
455 SH455   Male 36.34480 123  66.01157 189.8292 36.82410 21.15901 107.04992
456 SH456   Male 35.46805 129  74.77034 176.0756 33.87349 21.31194  80.18405
457 SH457   Male 35.10372 157  91.01194 199.1189 37.85192 21.75368  66.64691
458 SH458   Male 35.29969 122  75.32038 257.6944 36.94372 22.97150  56.85912
459 SH459 Female 38.13854 133  93.78523 195.9338 34.50561 22.89287  67.83764
460 SH460 Female 35.76835 134 100.95528 139.0819 35.88488 23.64899  61.71708
461 SH461   Male 34.25084 165  85.56568 213.4696 36.97902 23.45400  92.95461
462 SH462   Male 36.61085 149  65.38474 151.2336 34.74876 23.64059  69.29340
463 SH463 Female 35.11572 138 103.32238 169.7940 36.62894 24.82654 102.37667
464 SH464 Female 34.54163 145 104.64587 209.6987 35.33075 21.82042  56.21962
465 SH465   Male 34.96632 156 105.87584 277.2678 34.85572 24.45426  51.75973
466 SH466   Male 35.18084 120  91.70107 254.6433 35.94084 23.24648  76.41119
467 SH467   Male 37.04830 125  95.45657 227.5857 34.85140 22.94911  69.22273
468 SH468 Female 35.34490 143 107.58850 248.5143 37.92718 24.79703 105.92102
469 SH469 Female 33.94983 151  89.55096 185.8759 36.51868 21.40131  58.70004
470 SH470   Male 35.56695 144 106.18250 158.8488 33.00454 24.40102 105.45636
471 SH471 Female 35.86883 146 106.06335 232.5711 34.94956 23.08860 107.78745
472 SH472 Female 34.70174 137  74.61750 273.2029 35.43153 22.05537  51.97252
473 SH473 Female 34.36352 133  74.70245 228.4468 37.79293 21.59870  95.97772
474 SH474   Male 33.55750 127  88.42513 180.6563 33.11193 21.04579  78.05079
475 SH475 Female 36.03602 132  93.37777 279.5497 35.64101 23.59835  98.70572
476 SH476 Female 36.05150 151  81.60862 191.3685 34.06568 25.61164  80.68154
477 SH477 Female 36.20120 164  80.15549 278.2109 34.74739 22.76884  85.57246
478 SH478 Female 34.49677 154  82.14939 139.0084 36.31514 25.81692  77.45667
479 SH479 Female 34.48738 159  82.97992 205.4087 35.73351 25.86490  94.57158
480 SH480   Male 35.85124 145  66.58268 152.9679 33.97792 20.17096  77.24892
481 SH481 Female 36.24746 125  85.36318 197.6787 36.09931 22.91715  91.97530
482 SH482   Male 35.60726 158 100.29881 177.6243 35.09598 24.34079  79.18920
483 SH483 Female 36.14412 127  88.30164 183.9107 34.09620 21.98034  85.46655
484 SH484 Female 34.46625 155  74.91406 227.3835 37.95079 25.22752  69.05551
485 SH485 Female 34.39736 141  79.14316 217.1868 35.47598 20.94777  91.59600
486 SH486 Female 32.59701 124  84.03841 251.0667 36.16404 20.68300  55.68334
487 SH487 Female 34.27203 129 105.41863 193.2823 36.88931 25.69646  71.03947
488 SH488   Male 33.68436 162  83.50816 162.0864 34.60247 23.96547  86.94744
489 SH489   Male 34.72661 165  86.83433 136.6347 35.02566 23.79933  57.12790
490 SH490 Female 35.65420 136  97.87470 262.7717 36.04930 22.20049  82.46864
491 SH491   Male 35.09664 122  70.28110 167.8594 36.71293 23.72134  95.33343
492 SH492   Male 36.99740 151  75.66329 220.0938 37.34705 24.31999  51.53411
493 SH493 Female 31.79747 121  74.17385 176.0540 33.64144 24.92258  67.15833
494 SH494 Female 31.84995 149 108.19703 271.1991 35.19078 25.53744  97.90376
495 SH495 Female 34.88500 165 103.62307 148.7000 33.39861 21.09982  59.16143
496 SH496   Male 34.60810 150 109.03482 256.5770 34.92221 23.67665  60.35819
497 SH497   Male 32.06841 127  97.34128 264.2498 33.35666 24.90360  54.06701
498 SH498 Female 37.09394 151  88.92280 141.8004 35.90754 21.97291  82.42023
499 SH499   Male 35.31898 155  78.11437 147.5612 33.33667 22.11806  99.21905
500 SH500 Female 35.26502 143 105.05455 158.8434 36.08766 24.55627  87.06461
       depth
1   53.22635
2   49.63903
3   49.44057
4   50.29711
5   49.03183
6   46.84148
7   49.11554
8   50.59650
9   49.85394
10  51.16920
11  48.57698
12  50.59819
13  50.31891
14  55.30608
15  53.54209
16  50.66712
17  50.76841
18  52.84342
19  50.90719
20  48.35407
21  51.19436
22  47.11819
23  50.04670
24  48.54721
25  50.49128
26  53.79415
27  52.90098
28  50.80105
29  50.59854
30  47.24943
31  51.38600
32  49.54102
33  50.46116
34  47.67154
35  53.02799
36  50.16525
37  51.24776
38  51.07223
39  49.30344
40  48.74379
41  49.74821
42  51.88140
43  52.97056
44  48.06904
45  49.72480
46  50.45771
47  50.65035
48  50.47919
49  49.55720
50  51.19703
51  51.12896
52  47.57636
53  50.94438
54  51.69939
55  47.64576
56  51.30177
57  45.82523
58  48.09742
59  53.78593
60  51.78464
61  48.31524
62  52.41902
63  49.99928
64  49.61324
65  51.68339
66  51.04494
67  49.55312
68  45.90688
69  50.61433
70  47.48592
71  53.94849
72  50.99606
73  49.48395
74  49.36566
75  47.37765
76  49.16147
77  50.21770
78  49.78298
79  53.21268
80  53.78310
81  50.25283
82  51.12423
83  48.30569
84  49.85196
85  48.95057
86  53.06348
87  51.84685
88  48.15301
89  53.07349
90  49.75234
91  50.39840
92  51.20819
93  52.50975
94  50.04201
95  47.25511
96  53.78970
97  49.12667
98  49.92469
99  50.30870
100 50.51845
101 51.31445
102 48.67303
103 47.07040
104 51.98709
105 44.64474
106 50.59440
107 50.76879
108 49.80048
109 52.36699
110 49.89161
111 48.73722
112 54.79425
113 51.18954
114 48.91308
115 51.96076
116 50.43764
117 50.73841
118 52.14371
119 53.66833
120 50.89749
121 49.37737
122 52.11932
123 50.64543
124 51.01759
125 49.13213
126 47.92219
127 50.55757
128 49.80526
129 50.19277
130 50.13911
131 50.19285
132 46.78373
133 54.47089
134 47.78017
135 52.77678
136 51.54685
137 47.09099
138 52.47047
139 50.87541
140 47.65424
141 48.25289
142 47.55423
143 48.05781
144 50.60404
145 51.12350
146 52.49579
147 52.02509
148 51.94036
149 50.94988
150 50.64477
151 50.41775
152 50.48023
153 51.13113
154 52.02550
155 49.55520
156 52.10174
157 49.60139
158 53.81307
159 51.00424
160 48.82545
161 45.31157
162 47.88384
163 48.43633
164 50.89634
165 51.92694
166 50.57666
167 54.69200
168 50.23635
169 49.02411
170 47.11011
171 48.88285
172 49.14147
173 49.64868
174 52.63916
175 48.21670
176 51.34882
177 50.47331
178 49.16008
179 51.19454
180 50.04455
181 51.64892
182 50.53234
183 50.22172
184 48.52451
185 49.50023
186 53.81606
187 51.36398
188 49.74816
189 51.12401
190 55.12170
191 47.71242
192 51.68166
193 49.30371
194 50.79232
195 49.24551
196 51.03116
197 51.34402
198 49.44762
199 50.46984
200 49.29360
201 48.89701
202 50.25519
203 53.45442
204 47.12126
205 51.22780
206 46.46783
207 48.59292
208 49.23616
209 47.46398
210 47.86542
211 46.08500
212 50.08355
213 53.05863
214 52.41913
215 49.84933
216 47.13358
217 51.53943
218 46.33580
219 48.96726
220 50.53704
221 49.06487
222 48.03981
223 51.79526
224 49.99628
225 49.69935
226 50.49601
227 47.30531
228 49.76418
229 49.25833
230 49.24973
231 48.45078
232 55.02983
233 50.03516
234 47.90852
235 49.28132
236 52.88504
237 48.80291
238 50.13841
239 51.13299
240 50.12264
241 49.15964
242 50.39268
243 49.55292
244 45.52213
245 46.95435
246 50.25569
247 49.54298
248 46.76742
249 53.95736
250 52.85021
251 50.95442
252 54.25875
253 48.02634
254 50.45905
255 51.66043
256 51.36171
257 52.83560
258 48.11986
259 50.84090
260 49.40703
261 51.06647
262 47.27213
263 50.67571
264 53.53304
265 51.01849
266 53.43177
267 50.93599
268 51.31898
269 52.43260
270 47.04606
271 48.04941
272 49.72568
273 52.41726
274 48.96359
275 48.71256
276 48.87889
277 49.58868
278 50.87993
279 49.64042
280 47.94792
281 54.06261
282 47.97999
283 51.30813
284 51.23310
285 48.65615
286 49.64635
287 46.76780
288 50.13744
289 51.73770
290 50.36233
291 52.19427
292 52.19196
293 52.02757
294 47.94131
295 49.12175
296 49.53097
297 52.57367
298 47.52810
299 49.44280
300 48.41129
301 50.29773
302 52.79886
303 46.26686
304 46.05108
305 46.23747
306 53.10939
307 49.02755
308 51.20894
309 52.06400
310 49.95799
311 52.14297
312 51.57061
313 47.05292
314 49.00989
315 47.94731
316 48.24758
317 49.57484
318 50.74025
319 47.96024
320 52.55598
321 51.49505
322 50.01362
323 51.27924
324 49.49710
325 45.22390
326 49.28035
327 49.70779
328 51.20013
329 49.83698
330 54.33117
331 51.07560
332 51.79984
333 51.29194
334 45.76090
335 53.02412
336 50.16812
337 51.61258
338 51.30954
339 51.45210
340 50.45979
341 50.78879
342 52.37263
343 48.07822
344 54.05790
345 48.91885
346 45.87899
347 49.56443
348 49.15212
349 53.96122
350 51.95405
351 49.84155
352 51.25291
353 52.90357
354 46.95454
355 49.88291
356 51.72062
357 48.78801
358 47.76394
359 48.72243
360 50.15889
361 49.79721
362 48.42723
363 49.04939
364 49.70568
365 50.46341
366 49.55837
367 52.14514
368 48.39105
369 46.17011
370 48.63788
371 49.61791
372 47.75904
373 46.29181
374 49.21944
375 49.10393
376 51.48731
377 51.44714
378 46.10707
379 48.36763
380 49.82041
381 49.96346
382 47.53576
383 50.95838
384 56.82916
385 51.22813
386 47.21805
387 52.91236
388 50.12798
389 49.56710
390 50.69337
391 50.50971
392 54.47356
393 50.95881
394 48.77546
395 49.56845
396 54.54979
397 46.28239
398 54.16516
399 49.54275
400 50.21908
401 46.32807
402 54.27737
403 47.16676
404 52.92352
405 50.37530
406 50.83634
407 51.15836
408 48.19870
409 49.21340
410 49.88061
411 51.09545
412 51.77534
413 50.23290
414 49.86163
415 49.52463
416 47.24256
417 50.25876
418 50.62649
419 48.70445
420 48.52425
421 47.94873
422 47.15586
423 49.80686
424 52.22695
425 47.14508
426 46.65459
427 48.87254
428 50.78153
429 49.84879
430 52.85327
431 50.86464
432 50.88588
433 47.50464
434 48.11393
435 49.99973
436 48.04591
437 49.28590
438 50.66410
439 49.19377
440 47.02258
441 50.10694
442 49.76410
443 49.95988
444 49.07783
445 52.34601
446 51.62836
447 52.21376
448 49.20962
449 54.44601
450 52.37204
451 50.60091
452 50.51313
453 52.69699
454 48.91824
455 52.87533
456 49.45900
457 52.32235
458 50.12494
459 51.96627
460 50.75388
461 47.55695
462 52.77333
463 51.38182
464 50.28497
465 50.04182
466 52.47648
467 49.52439
468 51.63451
469 46.97514
470 53.09173
471 50.94501
472 49.02867
473 51.47058
474 47.31781
475 50.15977
476 50.00950
477 49.97932
478 50.82219
479 48.43085
480 52.17651
481 52.71425
482 52.24325
483 49.56941
484 51.97333
485 50.10833
486 47.80744
487 48.89706
488 48.57565
489 49.87668
490 49.75043
491 51.86649
492 49.83649
493 44.87603
494 47.83517
495 47.33958
496 48.46034
497 45.42679
498 53.05511
499 52.05860
500 49.28923
#View the First Few Rows of the Dataset
head(sharks)
     ID    sex   blotch BPM    weight   length      air    water      meta
1 SH001 Female 37.17081 148  74.69050 186.6703 37.73957 23.37377  64.11183
2 SH002 Female 34.54973 158  73.41627 189.3189 35.68413 21.42088  73.68676
3 SH003 Female 36.32861 125  71.80837 283.6332 34.79854 20.05114  54.43466
4 SH004   Male 35.33881 161 104.62985 171.0986 36.15973 21.64319  86.32615
5 SH005 Female 37.39799 138  67.13098 264.3160 33.61477 21.76143 107.97796
6 SH006   Male 33.54668 126 110.49396 269.9829 36.38343 20.85200 108.86475
     depth
1 53.22635
2 49.63903
3 49.44057
4 50.29711
5 49.03183
6 46.84148
#Structure of the Dataset
str(sharks)
'data.frame':   500 obs. of  10 variables:
 $ ID    : chr  "SH001" "SH002" "SH003" "SH004" ...
 $ sex   : chr  "Female" "Female" "Female" "Male" ...
 $ blotch: num  37.2 34.5 36.3 35.3 37.4 ...
 $ BPM   : int  148 158 125 161 138 126 166 135 132 127 ...
 $ weight: num  74.7 73.4 71.8 104.6 67.1 ...
 $ length: num  187 189 284 171 264 ...
 $ air   : num  37.7 35.7 34.8 36.2 33.6 ...
 $ water : num  23.4 21.4 20.1 21.6 21.8 ...
 $ meta  : num  64.1 73.7 54.4 86.3 108 ...
 $ depth : num  53.2 49.6 49.4 50.3 49 ...
#Summary Statistics
summary(sharks)
      ID                sex                blotch           BPM       
 Length:500         Length:500         Min.   :30.78   Min.   :119.0  
 Class :character   Class :character   1st Qu.:34.16   1st Qu.:129.0  
 Mode  :character   Mode  :character   Median :35.05   Median :142.0  
                                       Mean   :35.13   Mean   :141.8  
                                       3rd Qu.:36.05   3rd Qu.:153.2  
                                       Max.   :40.08   Max.   :166.0  
     weight           length           air            water      
 Min.   : 65.10   Min.   :128.3   Min.   :33.00   Min.   :20.01  
 1st Qu.: 75.68   1st Qu.:172.0   1st Qu.:34.42   1st Qu.:21.55  
 Median : 87.82   Median :211.1   Median :35.43   Median :23.11  
 Mean   : 87.94   Mean   :211.0   Mean   :35.54   Mean   :23.02  
 3rd Qu.:100.40   3rd Qu.:251.8   3rd Qu.:36.71   3rd Qu.:24.37  
 Max.   :110.94   Max.   :291.0   Max.   :38.00   Max.   :25.99  
      meta            depth      
 Min.   : 50.03   Min.   :44.64  
 1st Qu.: 67.39   1st Qu.:48.90  
 Median : 82.45   Median :50.14  
 Mean   : 82.04   Mean   :50.14  
 3rd Qu.: 95.97   3rd Qu.:51.35  
 Max.   :112.45   Max.   :56.83  
#Check for Missing Values
colSums(is.na(sharks))
    ID    sex blotch    BPM weight length    air  water   meta  depth 
     0      0      0      0      0      0      0      0      0      0 
#No missing Values

# Visualize missing data
aggr(sharks, col = c("navyblue", "red"), numbers = TRUE, 
     sortVars = TRUE, labels = names(sharks),
     cex.axis = 0.7, gap = 3, ylab = c("Missing Data", "Pattern"))


 Variables sorted by number of missings: 
 Variable Count
       ID     0
      sex     0
   blotch     0
      BPM     0
   weight     0
   length     0
      air     0
    water     0
     meta     0
    depth     0
#Get the Dimensions of the Dataset
dim(sharks)
[1] 500  10
#Unique Values for Categorical Variables/ designate sex as a factor
sharks$fSex <- factor(sharks$sex)

1.2.1 Checking Outliers

#OUTLIERS

#Outliers are visually represented as individual points outside the whiskers of the box.

boxplot.stats(sharks$blotch)$out
[1] 39.83638 39.13972 30.77585 40.08356
#Highlight outliers in the blotching time boxplot

boxplot(sharks$blotch, main = "Blotching Time with Outliers", col = "lightblue")

#use Z-scores to detect outliers

sharks <- sharks %>%
  mutate(blotch_zscore = scale(blotch))

# Outliers: Z-scores > 3 or < -3
outliers <- sharks %>% filter(abs(blotch_zscore) > 3)
print(outliers)
     ID    sex   blotch BPM    weight   length      air    water     meta
1 SH014   Male 39.83638 121  90.88816 193.3701 34.44364 23.39661 99.84946
2 SH161 Female 30.77585 149 109.05626 253.9729 34.46067 24.02721 64.15829
3 SH392   Male 40.08356 141 110.88848 203.7803 34.34650 24.45843 60.16624
     depth   fSex blotch_zscore
1 55.30608   Male      3.300184
2 45.31157 Female     -3.047004
3 54.47356   Male      3.473342
#A common threshold for identifying outliers is a Z-score greater than 3 or less than -3

#The outliers data frame displays the rows that have blotch values with Z-scores exceeding the threshold.

1.2.2 Visualize the distribution of data

#vector of variables
Names <- c("blotch","BPM","weight","length","air","water","meta","depth")

# plot
dotplot(as.matrix(as.matrix(sharks[,Names])),
        groups=FALSE,
        strip = strip.custom(bg = 'white',
                             par.strip.text = list(cex = 1.2)),
        scales = list(x = list(relation = "free", draw = TRUE),
                      y = list(relation = "free", draw = FALSE)),
        col = 1, cex  = 1, pch = 16,
        xlab = list(label = "Value of the variable", cex = 1.2),
        ylab = list(label = "Order of the data", 
                    cex = 1.2))

#Dots that are far away from the main cluster of dots might indicate potential outliers.

1.2.3 Outilers Analysis Continued

#For "depth" there appears to be one shark that is set unusually high.

#"blotch" there is one shark that is unusually low and another unusually high.

#Using, Grubb's test to test whether the values are farthest the mean in an outlier.
#Using, Grubb's test to test whether the values are farthest the mean in an outlier.
grubbs.test(sharks$depth,type = 10)

    Grubbs test for one outlier

data:  sharks$depth
G = 3.31179, U = 0.97798, p-value = 0.2182
alternative hypothesis: highest value 56.82916 is an outlier
#Grubbs test for one outlier

#data: sharks$depth G = 3.31179, U = 0.97798, p-value = 0.2182 alternative hypothesis: highest value 56.82916 is an outlier.

#The test indicates that the highest value 56.82916 is not an outlier since the p-value exceeds 0.05.
grubbs.test(sharks$blotch,type = 11)

    Grubbs test for two opposite outliers

data:  sharks$blotch
G = 6.52035, U = 0.95722, p-value = 0.4064
alternative hypothesis: 30.77585 and 40.08356 are outliers
#The test indicates that the values 30.77585 and 40.08356 are  not outliers since the

#p-values exceeds 0.05.

1.2.4 Testing Normality and Homogeneity of the data-set.

#NORMALITY AND HOMOGENEITY OF VARIABLES

par(mfrow = c(2,2), mar = c(5,5,2,2), cex.lab = 1)

hist(sharks$blotch, main = "Histogram of Variable blotch", xlab = "Time taken for blotching to cover 30% of ventral surface", col = "blue", border = "black")

hist(sharks$BPM, main = "Histogram of Variable BPM", xlab = "Heart rate", col = "blue", border = "black")

hist(sharks$weight, main = "Histogram of Variable Weight", xlab = "Total body weight - measured by hoisting the animal into a specialised sling", col = "blue", border = "black")

hist(sharks$length, main = "Histogram of Variable length", xlab = "Total body length, measured from tip if the snout to the tip of the upper lode of the tail fin.", col = "blue", border = "black")

hist(sharks$air, main = "Histogram of Variable air", xlab = "Ambient air temperature", col = "blue", border = "black")

hist(sharks$water, main = "Histogram of Variable water", xlab = "Water temperature at surface at time of processing", col = "blue", border = "black")

hist(sharks$meta, main = "Histogram of Variable meta", xlab = "Measurement of stress hormone cortisol via blood sample", col = "blue", border = "black")


hist(sharks$depth,  xlab = "depth at which the animal was hooked",
     col = "lightblue", border = "black",  main = "Histogram of variable depth")

1.2.5 Shapiro Test for each variable.

#Test for normality for each variable.

shapiro.test(sharks$blotch)

    Shapiro-Wilk normality test

data:  sharks$blotch
W = 0.99695, p-value = 0.4769
#The p-value is 0.4769, which is greater than 0.05. Normally distributed.

shapiro.test(sharks$BPM)

    Shapiro-Wilk normality test

data:  sharks$BPM
W = 0.947, p-value = 2.178e-12
#p-value = 2.178e-12. Not normally distributed


shapiro.test(sharks$weight)

    Shapiro-Wilk normality test

data:  sharks$weight
W = 0.94662, p-value = 1.929e-12
#p-value = 1.929e-12.Not normally distributed

shapiro.test(sharks$length)

    Shapiro-Wilk normality test

data:  sharks$length
W = 0.95668, p-value = 5.963e-11
#p-value = 5.963e-11. Not normally distributed

shapiro.test(sharks$air)

    Shapiro-Wilk normality test

data:  sharks$air
W = 0.95885, p-value = 1.338e-10
#p-value = 1.338e-10. Not normally distributed

shapiro.test(sharks$meta)

    Shapiro-Wilk normality test

data:  sharks$meta
W = 0.96374, p-value = 9.141e-10
#p-value = 9.141e-10. Not normally distributed

shapiro.test(sharks$depth)

    Shapiro-Wilk normality test

data:  sharks$depth
W = 0.99746, p-value = 0.6485
#p-value = 0.6485. Normally distributed

2. Define Hypothesis for the study

#Define Hypothesis

#Is there a significant correlation between air temperature and water temperature?

#Does the time to blotch increase, decrease, or stay consistent after a second capture?

#Can variables like heart rate, weight, and cortisol levels predict blotching time

3. Testing Hypothesis 1

#Testing Hypothesis

#Is there a significant correlation between air temperature and water temperature?


#Null Hypothesis (H₀): There is no significant linear correlation between air and water temperature (correlation = 0).

#Alternative Hypothesis (H₁): There is a significant linear correlation between air and water temperature (correlation ≠ 0).
#Advanced Visualization of correlation between air temp and water temp

ggplot(sharks, aes(x = air, y = water)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red", se = FALSE) +
  labs(title = "Scatterplot with Trendline: Air vs Water", 
       x = "Air Temperature", 
       y = "Water Temperature")

#Perform the correlation test using the cor.test() function.
#Statistical Correlation

#Calculate the correlation coefficient to quantify the strength and direction of the relationship.
#As variables "air" and "water" are two continuous non-normal variables, used Spearman's rank correlation

# Calculate Spearman correlation
correlation_spearman <- cor(sharks$air, sharks$water, method = "spearman", use = "complete.obs")

# Print the result
print(paste("Spearman Correlation:", correlation_spearman))
[1] "Spearman Correlation: -0.056373441493766"
#Interpretation of the Spearman Correlation

#The value is -0.056, the correlation is very close to 0, indicates a weak or no linear relationship between air temp and water temp.

#The negative sign suggests a slight negative trend, air temperature increases, the water temperature decreases slightly.

3.1 Testing Hypothesis 2

#Importing Sharksub Data Set

#Importing Data

sharksub <- read.csv("~/Penguin/sharksub.csv")

#Exploring Data

str(sharksub)
'data.frame':   50 obs. of  4 variables:
 $ ID     : chr  "SH269" "SH163" "SH008" "SH239" ...
 $ sex    : chr  "Female" "Female" "Female" "Female" ...
 $ blotch1: num  36.1 33.4 36.3 35 35.7 ...
 $ blotch2: num  37.2 34.4 36.5 36 36.8 ...
summary(sharksub)
      ID                sex               blotch1         blotch2     
 Length:50          Length:50          Min.   :32.49   Min.   :33.47  
 Class :character   Class :character   1st Qu.:34.38   1st Qu.:35.31  
 Mode  :character   Mode  :character   Median :34.94   Median :35.94  
                                       Mean   :35.03   Mean   :35.96  
                                       3rd Qu.:35.90   3rd Qu.:36.78  
                                       Max.   :37.07   Max.   :38.18  
head(sharksub)
     ID    sex  blotch1  blotch2
1 SH269 Female 36.07201 37.15417
2 SH163 Female 33.38396 34.38548
3 SH008 Female 36.29497 36.46102
4 SH239 Female 34.98931 36.03899
5 SH332 Female 35.70572 36.77689
6 SH328 Female 34.90283 35.94991
#Checking for zero values

sum(sharksub$blotchdiff == 0)   * 100 / nrow(sharksub)
[1] 0
#No zero

3.1.1 NORMALITY AND HOMOGENEITY Test for sharksub data

#NORMALITY AND HOMOGENEITY OF DEPENDENT VARIABLES

par(mfrow = c(2,2), mar = c(5,5,2,2), cex.lab = 1)
hist(sharksub$blotch1, xlab = "", col = "lightblue", 
     border = "black", main = "blotch1 (seconds)")

hist(sharksub$blotch2,  xlab = "", col = "lightblue",  
     border = "black",  main = "blotch2 (seconds)")

# blotching data approximately normal

#Shapiro-Wilk test for deviation from normality for blothch1
shapiro.test(sharksub$blotch1)

    Shapiro-Wilk normality test

data:  sharksub$blotch1
W = 0.97958, p-value = 0.5345
#normal distribution because p value higher than 0.05

#Shapiro test for blotch2
shapiro.test(sharksub$blotch2)

    Shapiro-Wilk normality test

data:  sharksub$blotch2
W = 0.97936, p-value = 0.5255
#Normal distribution.

# Homogeneity of variance

# Bartlett Test (for normal data)

#  For blotch1
bartlett.test(blotch1 ~ sex, data = sharksub)

    Bartlett test of homogeneity of variances

data:  blotch1 by sex
Bartlett's K-squared = 0.0015243, df = 1, p-value = 0.9689
#The variances of blotch1 for males and females can be considered equal

#For blotch2

bartlett.test(blotch2 ~ sex, data = sharksub)

    Bartlett test of homogeneity of variances

data:  blotch2 by sex
Bartlett's K-squared = 0.14723, df = 1, p-value = 0.7012
#blotch  not deviate significantly from homogeneity

3.1.2 Differences between blotch 1 and blotch 2

#Visualize the differences between blotch1 and blotch2

# Boxplot to compare blotching times
boxplot(sharksub$blotch1, sharksub$blotch2,
        names = c("Blotch1", "Blotch2"),
        main = "Blotching Time for First vs Second Capture",
        ylab = "Blotching Time",
        col = c("lightblue", "lightgreen"))

# Scatterplot with a line connecting paired values
plot(sharksub$blotch1, sharksub$blotch2,
     xlab = "Blotch1",
     ylab = "Blotch2",
     main = "Paired Blotch Time Comparison")

#Hypothesis Testing

#Null Hypothesis (H₀): There is no significant difference between blotch1 and blotch2.

#Alternative Hypothesis (H₁): There is a significant difference between blotch1 and blotch2.
#The blotch times are measured on the same individuals,Soa paired t-test was used.

# Paired t-test
t_test_result <- t.test(sharksub$blotch1, sharksub$blotch2, paired = TRUE)

# View the test results
print(t_test_result)

    Paired t-test

data:  sharksub$blotch1 and sharksub$blotch2
t = -17.39, df = 49, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
 -1.037176 -0.822301
sample estimates:
mean difference 
     -0.9297384 

3.1.3 Does the sex affect to the blotch? further analysis…

#Boxplots of blotch1 and blotch2 with sex. 

par(mfrow = c(2,2), mar = c(5,5,2,2), cex.lab = 1)
boxplot(blotch1 ~ sex, 
        ylab = "blotch1 (seconds)",
        xlab = "sex",
        col = "lightblue",
        data = sharksub, 
        las=1)

boxplot(blotch2 ~ sex, 
        ylab = "blotch2 (seconds)",
        xlab = "sex",
        col = "lightblue",
        data = sharksub, 
        las=1)

#There is not significant effect on blotching whether the shark was a male or a female. The mean values were not showing a significant difference.     

#Create new variable for blotch differencces
sharksub$blotchngdiff <- sharksub$blotch2 - sharksub$blotch1

# Use a Shapiro-Wilk test to check for normality
shapiro.test(sharksub$blotchngdiff)

    Shapiro-Wilk normality test

data:  sharksub$blotchngdiff
W = 0.43157, p-value = 1.212e-12
# Visualize the differences with a histogram 

hist(sharksub$blotchngdiff, main = "Histogram of Differences", xlab = "Difference in Blotching Times")

# The differences in blotching times (sharksub$blotchngdiff) are not normally distribute
par(mfrow = c(1,2), mar = c(5,5,2,2), cex.lab = 1)

boxplot(blotchngdiff ~ sex, 
        ylab = "change in blotching time(blotchdiff) when sharks were caught for second time",
        xlab = "sex",
        col = "lightblue",
        data = sharksub, 
        las = 1)

#Gender-Based Comparison of Blotching Time Differences
t.test(blotchngdiff ~ sex, data = sharksub,var.equal = TRUE)

    Two Sample t-test

data:  blotchngdiff by sex
t = 0.40707, df = 48, p-value = 0.6858
alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
95 percent confidence interval:
 -0.1729411  0.2607433
sample estimates:
mean in group Female   mean in group Male 
           0.9516890            0.9077879 
#There is not significant effect on blotching whether the shark was a male or a female. The mean values were not showing a significant difference.

3.2 Testing Hypothesis 3

Checking all correlation with blotch.

#Investigating relationship between BPM and blotch
ggplot(sharks, aes(x = BPM, y = blotch)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  labs(title = "BPM vs Blotch", x = "BPM (Beats per minute)", y = "Blotch (Seconds)")

#the relationship between BPM and blotch is non-linear
#Investigating relationship between weight and blotch

ggplot(sharks, aes(x = weight, y = blotch)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  labs(title = "Weight vs Blotch", x = "Weight (Kg)", y = "Blotch (Seconds)")

#the relationship between weight and blotch is non-linear
#Investigating relationship between length and blotch

ggplot(sharks, aes(x = length, y = blotch)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  labs(title = "Length vs Blotch", x = "Length (cm)", y = "Blotch (seconds)")

#the relationship between length and blotch is non-linear
#Investigating relationship between air and blotch

ggplot(sharks, aes(x = air, y = blotch)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  labs(title = "air vs Blotch", x = "air temperature (Celsius) ", y = "Blotch (seconds)")

#the relationship between ambient air temperature and blotch is non-linear
#Investigating relationship between water and blotch
ggplot(sharks, aes(x = water, y = (blotch))) +
  xlim(19,27) + ylim(30,42) +
  geom_point(shape = 16, size = 3, alpha = 0.7) +
  geom_smooth(method = 'lm', colour = 'red', se = FALSE, size = 1.5) +
  theme(panel.background = element_blank()) +
  theme(panel.border = element_rect(fill = NA, size = 1)) +
  theme(strip.background = element_rect(fill = "white", 
                                        color = "white", size = 1)) +
  theme(text = element_text(size=13)) +
  xlab("surface water temperature (celcius)") + ylab("blotch (seconds)")

##the relationship between surface temperature and blotch is non-linear
#Investigating relationship between meta and blotch

ggplot(sharks, aes(x = meta, y = blotch)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  labs(title = "meta vs Blotch", x = "Measurement of stress hormone cortisol via blood sample (mcg/dl)", y = "Blotch (seconds)")

#the relationship between surface meta and blotch is non-linear
#Investigating relationship between depth and blotch

ggplot(sharks, aes(x = depth, y = blotch)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  labs(title = "depth vs Blotch", x = "depth at which the animal was hooked (Metres)", y = "Blotch (seconds)")

#the relationship between depth at animal hooked and blotch is linear significant positive relationship
#Check Correlations

#the relationship between depth at animal hooked and blotch is linear significant positive relationship

3.2.1 Simple Linear Regression model

# Fit a simple linear regression model
depth_model <- lm(blotch ~ depth, data = sharks)

# Summary of the model
summary(depth_model)

Call:
lm(formula = blotch ~ depth, data = sharks)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.81869 -0.65427 -0.01035  0.58825  2.83116 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  9.82178    1.11207   8.832   <2e-16 ***
depth        0.50467    0.02216  22.772   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1 on 498 degrees of freedom
Multiple R-squared:  0.5101,    Adjusted R-squared:  0.5091 
F-statistic: 518.6 on 1 and 498 DF,  p-value: < 2.2e-16
# Check residuals for normality
plot(depth_model, which = 2)

shapiro.test(residuals(depth_model))

    Shapiro-Wilk normality test

data:  residuals(depth_model)
W = 0.99748, p-value = 0.653
library(lmtest)
dwtest(depth_model)

    Durbin-Watson test

data:  depth_model
DW = 2.0966, p-value = 0.8604
alternative hypothesis: true autocorrelation is greater than 0

3.2.2 Multiple linear Regression model

# Fit a multiple linear regression model
multi_model <- lm(blotch ~ depth + BPM + weight + length + sex, data = sharks)

# View model summary
summary(multi_model)

Call:
lm(formula = blotch ~ depth + BPM + weight + length + sex, data = sharks)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.9429 -0.6297 -0.0332  0.6141  2.9488 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  9.5084653  1.2703316   7.485 3.31e-13 ***
depth        0.5042274  0.0220283  22.890  < 2e-16 ***
BPM         -0.0018814  0.0031412  -0.599 0.549489    
weight       0.0017185  0.0032929   0.522 0.601995    
length       0.0013689  0.0009565   1.431 0.153023    
sexMale      0.3074703  0.0887632   3.464 0.000579 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9898 on 494 degrees of freedom
Multiple R-squared:  0.5241,    Adjusted R-squared:  0.5193 
F-statistic: 108.8 on 5 and 494 DF,  p-value: < 2.2e-16
# Compare models using Akaike Information Criterion (AIC)
AIC(depth_model, multi_model)
            df      AIC
depth_model  3 1423.059
multi_model  7 1416.602
# Compute Adjusted R-squared
summary(depth_model)$adj.r.squared
[1] 0.5091332
summary(multi_model)$adj.r.squared
[1] 0.5192615

3.2.3 Model Validation

#Validate the Model

# Split data into training and testing
set.seed(123)
train_indices <- sample(1:nrow(sharks), 0.7 * nrow(sharks))
train_data <- sharks[train_indices, ]
test_data <- sharks[-train_indices, ]


# Fit model on training data
train_model <- lm(blotch ~ depth, data = train_data)

# Predict on test data
test_data$predicted_blotch <- predict(train_model, test_data)


# Evaluate performance
library(Metrics)
# Mean Absolute Error
mae(test_data$blotch, test_data$predicted_blotch) 
[1] 0.8333955
# Root Mean Squared Error
rmse(test_data$blotch, test_data$predicted_blotch) 
[1] 1.031929

3.2.4 Model Validation

#Predict Using the Model
# Predict blotch for new depth values
new_data <- data.frame(depth = c(50, 100, 150))
new_data$predicted_blotch <- predict(depth_model, new_data)

print(new_data)
  depth predicted_blotch
1    50         35.05544
2   100         60.28911
3   150         85.52277
#Visualize Predictions

ggplot(sharks, aes(x = depth, y = blotch)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  labs(title = "Depth vs Blotch Prediction", 
       x = "Depth (metres)", 
       y = "Blotch (seconds)") +
  geom_point(data = new_data, aes(x = depth, y = predicted_blotch), 
             color = "green", size = 3, shape = 18)